3DGabSplat: 3D Gabor Splatting for Frequency-adaptive Radiance Field Rendering
- URL: http://arxiv.org/abs/2508.05343v1
- Date: Thu, 07 Aug 2025 12:49:44 GMT
- Title: 3DGabSplat: 3D Gabor Splatting for Frequency-adaptive Radiance Field Rendering
- Authors: Junyu Zhou, Yuyang Huang, Wenrui Dai, Junni Zou, Ziyang Zheng, Nuowen Kan, Chenglin Li, Hongkai Xiong,
- Abstract summary: 3D Gaussian Splatting (3DGS) has enabled real-time rendering while maintaining high-fidelity novel view synthesis.<n>We propose 3D Gabor Splatting (3DGabSplat) that incorporates a novel 3D Gabor-based primitive with multiple directional 3D frequency responses.<n>We achieve 1.35 dBR gain over 3D with simultaneously reduced number of primitive memory consumption.
- Score: 50.04967868036964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent prominence in 3D Gaussian Splatting (3DGS) has enabled real-time rendering while maintaining high-fidelity novel view synthesis. However, 3DGS resorts to the Gaussian function that is low-pass by nature and is restricted in representing high-frequency details in 3D scenes. Moreover, it causes redundant primitives with degraded training and rendering efficiency and excessive memory overhead. To overcome these limitations, we propose 3D Gabor Splatting (3DGabSplat) that leverages a novel 3D Gabor-based primitive with multiple directional 3D frequency responses for radiance field representation supervised by multi-view images. The proposed 3D Gabor-based primitive forms a filter bank incorporating multiple 3D Gabor kernels at different frequencies to enhance flexibility and efficiency in capturing fine 3D details. Furthermore, to achieve novel view rendering, an efficient CUDA-based rasterizer is developed to project the multiple directional 3D frequency components characterized by 3D Gabor-based primitives onto the 2D image plane, and a frequency-adaptive mechanism is presented for adaptive joint optimization of primitives. 3DGabSplat is scalable to be a plug-and-play kernel for seamless integration into existing 3DGS paradigms to enhance both efficiency and quality of novel view synthesis. Extensive experiments demonstrate that 3DGabSplat outperforms 3DGS and its variants using alternative primitives, and achieves state-of-the-art rendering quality across both real-world and synthetic scenes. Remarkably, we achieve up to 1.35 dB PSNR gain over 3DGS with simultaneously reduced number of primitives and memory consumption.
Related papers
- NeRF Is a Valuable Assistant for 3D Gaussian Splatting [31.459790269584165]
We introduce NeRF-GS, a novel framework that jointly optimize Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS)<n>We revisit the design of 3DGS and progressively align its spatial features with NeRF, enabling both representations to be optimized within the same scene through shared 3D spatial information.<n> Experimental results on benchmark datasets show that NeRF-GS surpasses existing methods and achieves state-of-the-art performance.
arXiv Detail & Related papers (2025-07-31T09:43:31Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - SOGS: Second-Order Anchor for Advanced 3D Gaussian Splatting [116.22623164585114]
SOGS is an anchor-based 3D-GS technique that introduces second-order anchors to achieve superior rendering quality and reduced anchor features and model size simultaneously.<n>We show that SOGS achieves superior rendering quality in novel view synthesis with clearly reduced model size.
arXiv Detail & Related papers (2025-03-10T15:50:46Z) - StructGS: Adaptive Spherical Harmonics and Rendering Enhancements for Superior 3D Gaussian Splatting [5.759434800012218]
StructGS is a framework that enhances 3D Gaussian Splatting (3DGS) for improved novel-view synthesis in 3D reconstruction.<n>Our framework significantly reduces computational redundancy, enhances detail capture and supports high-resolution rendering from low-resolution inputs.
arXiv Detail & Related papers (2025-03-09T05:39:44Z) - 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.<n>3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.<n>Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.<n>3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - Optimizing 3D Gaussian Splatting for Sparse Viewpoint Scene Reconstruction [11.840097269724792]
3D Gaussian Splatting (3DGS) has emerged as a promising approach for 3D scene representation, offering a reduction in computational overhead compared to Neural Radiance Fields (NeRF)
We introduce SVS-GS, a novel framework for Sparse Viewpoint Scene reconstruction that integrates a 3D Gaussian smoothing filter to suppress artifacts.
arXiv Detail & Related papers (2024-09-05T03:18:04Z) - WildGaussians: 3D Gaussian Splatting in the Wild [80.5209105383932]
We introduce WildGaussians, a novel approach to handle occlusions and appearance changes with 3DGS.
We demonstrate that WildGaussians matches the real-time rendering speed of 3DGS while surpassing both 3DGS and NeRF baselines in handling in-the-wild data.
arXiv Detail & Related papers (2024-07-11T12:41:32Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics.
We propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections.
Our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed.
arXiv Detail & Related papers (2024-06-04T15:17:37Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.