NeRF Is a Valuable Assistant for 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2507.23374v1
- Date: Thu, 31 Jul 2025 09:43:31 GMT
- Title: NeRF Is a Valuable Assistant for 3D Gaussian Splatting
- Authors: Shuangkang Fang, I-Chao Shen, Takeo Igarashi, Yufeng Wang, ZeSheng Wang, Yi Yang, Wenrui Ding, Shuchang Zhou,
- Abstract summary: We introduce NeRF-GS, a novel framework that jointly optimize Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS)<n>We revisit the design of 3DGS and progressively align its spatial features with NeRF, enabling both representations to be optimized within the same scene through shared 3D spatial information.<n> Experimental results on benchmark datasets show that NeRF-GS surpasses existing methods and achieves state-of-the-art performance.
- Score: 31.459790269584165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce NeRF-GS, a novel framework that jointly optimizes Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). This framework leverages the inherent continuous spatial representation of NeRF to mitigate several limitations of 3DGS, including sensitivity to Gaussian initialization, limited spatial awareness, and weak inter-Gaussian correlations, thereby enhancing its performance. In NeRF-GS, we revisit the design of 3DGS and progressively align its spatial features with NeRF, enabling both representations to be optimized within the same scene through shared 3D spatial information. We further address the formal distinctions between the two approaches by optimizing residual vectors for both implicit features and Gaussian positions to enhance the personalized capabilities of 3DGS. Experimental results on benchmark datasets show that NeRF-GS surpasses existing methods and achieves state-of-the-art performance. This outcome confirms that NeRF and 3DGS are complementary rather than competing, offering new insights into hybrid approaches that combine 3DGS and NeRF for efficient 3D scene representation.
Related papers
- 3DGabSplat: 3D Gabor Splatting for Frequency-adaptive Radiance Field Rendering [50.04967868036964]
3D Gaussian Splatting (3DGS) has enabled real-time rendering while maintaining high-fidelity novel view synthesis.<n>We propose 3D Gabor Splatting (3DGabSplat) that incorporates a novel 3D Gabor-based primitive with multiple directional 3D frequency responses.<n>We achieve 1.35 dBR gain over 3D with simultaneously reduced number of primitive memory consumption.
arXiv Detail & Related papers (2025-08-07T12:49:44Z) - FlexGS: Train Once, Deploy Everywhere with Many-in-One Flexible 3D Gaussian Splatting [57.97160965244424]
3D Gaussian splatting (3DGS) has enabled various applications in 3D scene representation and novel view synthesis.<n>Previous approaches have focused on pruning less important Gaussians, effectively compressing 3DGS.<n>We present an elastic inference method for 3DGS, achieving substantial rendering performance without additional fine-tuning.
arXiv Detail & Related papers (2025-06-04T17:17:57Z) - Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set [49.780302894956776]
It is vital to infer a signed distance function (SDF) in multi-view based surface reconstruction.
We propose a method that seamlessly merge 3DGS with the learning of neural SDFs.
Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely used benchmarks.
arXiv Detail & Related papers (2024-10-18T05:48:06Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS.<n>In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss.<n> Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods.
arXiv Detail & Related papers (2024-09-24T23:18:32Z) - Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation [45.582869951581785]
Implicit Gaussian Splatting (IGS) is an innovative hybrid model that integrates explicit point clouds with implicit feature embeddings.
We introduce a level-based progressive training scheme, which incorporates explicit spatial regularization.
Our algorithm can deliver high-quality rendering using only a few MBs, effectively balancing storage efficiency and rendering fidelity.
arXiv Detail & Related papers (2024-08-19T14:34:17Z) - WildGaussians: 3D Gaussian Splatting in the Wild [80.5209105383932]
We introduce WildGaussians, a novel approach to handle occlusions and appearance changes with 3DGS.
We demonstrate that WildGaussians matches the real-time rendering speed of 3DGS while surpassing both 3DGS and NeRF baselines in handling in-the-wild data.
arXiv Detail & Related papers (2024-07-11T12:41:32Z) - MotionGS : Compact Gaussian Splatting SLAM by Motion Filter [10.979138131565238]
There has been a surge in NeRF-based SLAM, while 3DGS-based SLAM is sparse.
A novel 3DGS-based SLAM approach with a fusion of deep visual feature, dual selection and 3DGS is presented in this paper.
arXiv Detail & Related papers (2024-05-18T00:47:29Z) - 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting [58.95801720309658]
In this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR.<n>The key insight is incorporating an implicit signed distance field (SDF) within 3D Gaussians to enable them to be aligned and jointly optimized.<n>Our experimental results demonstrate that our 3DGSR method enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS.
arXiv Detail & Related papers (2024-03-30T16:35:38Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.