NomicLaw: Emergent Trust and Strategic Argumentation in LLMs During Collaborative Law-Making
- URL: http://arxiv.org/abs/2508.05344v1
- Date: Thu, 07 Aug 2025 12:49:44 GMT
- Title: NomicLaw: Emergent Trust and Strategic Argumentation in LLMs During Collaborative Law-Making
- Authors: Asutosh Hota, Jussi P. P. Jokinen,
- Abstract summary: We introduce NomicLaw, a structured multi-agent simulation where LLMs engage in collaborative law-making.<n>We quantitatively measure trust and reciprocity via voting patterns and qualitatively assess how agents use strategic language to justify proposals.<n>Our results highlight the latent social reasoning and persuasive capabilities of ten open-source LLMs and provide insights into the design of future AI systems.
- Score: 6.56837855642886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large language models (LLMs) have extended their capabilities from basic text processing to complex reasoning tasks, including legal interpretation, argumentation, and strategic interaction. However, empirical understanding of LLM behavior in open-ended, multi-agent settings especially those involving deliberation over legal and ethical dilemmas remains limited. We introduce NomicLaw, a structured multi-agent simulation where LLMs engage in collaborative law-making, responding to complex legal vignettes by proposing rules, justifying them, and voting on peer proposals. We quantitatively measure trust and reciprocity via voting patterns and qualitatively assess how agents use strategic language to justify proposals and influence outcomes. Experiments involving homogeneous and heterogeneous LLM groups demonstrate how agents spontaneously form alliances, betray trust, and adapt their rhetoric to shape collective decisions. Our results highlight the latent social reasoning and persuasive capabilities of ten open-source LLMs and provide insights into the design of future AI systems capable of autonomous negotiation, coordination and drafting legislation in legal settings.
Related papers
- Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games [87.5673042805229]
How large language models balance self-interest and collective well-being is a critical challenge for ensuring alignment, robustness, and safe deployment.<n>We adapt a public goods game with institutional choice from behavioral economics, allowing us to observe how different LLMs navigate social dilemmas.<n>Surprisingly, we find that reasoning LLMs, such as the o1 series, struggle significantly with cooperation.
arXiv Detail & Related papers (2025-06-29T15:02:47Z) - From Legal Texts to Defeasible Deontic Logic via LLMs: A Study in Automated Semantic Analysis [0.0]
We present a novel approach to the automated semantic analysis of legal texts using large language models (LLMs)<n>We propose a structured pipeline that segments complex normative language into atomic snippets, extracts deontic rules, and evaluates them for syntactic and semantic coherence.
arXiv Detail & Related papers (2025-06-10T15:25:19Z) - Arbiters of Ambivalence: Challenges of Using LLMs in No-Consensus Tasks [52.098988739649705]
This study examines the biases and limitations of LLMs in three roles: answer generator, judge, and debater.<n>We develop a no-consensus'' benchmark by curating examples that encompass a variety of a priori ambivalent scenarios.<n>Our results show that while LLMs can provide nuanced assessments when generating open-ended answers, they tend to take a stance on no-consensus topics when employed as judges or debaters.
arXiv Detail & Related papers (2025-05-28T01:31:54Z) - AUTOLAW: Enhancing Legal Compliance in Large Language Models via Case Law Generation and Jury-Inspired Deliberation [5.732271982985626]
AutoLaw is a novel violation detection framework for domain-specific large language models (LLMs)<n>It combines adversarial data generation with a jury-inspired deliberation process to enhance legal compliance of LLMs.<n>Our results highlight the framework's ability to adaptively probe legal misalignments and deliver reliable, context-aware judgments.
arXiv Detail & Related papers (2025-05-20T07:09:13Z) - An Explicit Syllogistic Legal Reasoning Framework for Large Language Models [5.501226256903341]
Large language models (LLMs) can answer legal questions, but often struggle with explicit syllogistic reasoning.<n>We introduce SyLeR, a novel framework designed to enable LLMs to perform explicit syllogistic legal reasoning.<n>SyLeR employs a tree-structured hierarchical retrieval mechanism to synthesize relevant legal statutes and precedents.
arXiv Detail & Related papers (2025-04-05T03:34:51Z) - Societal Alignment Frameworks Can Improve LLM Alignment [50.97852062232431]
We argue that improving LLM alignment requires incorporating insights from societal alignment frameworks.<n>We then investigate how uncertainty within societal alignment frameworks manifests in LLM alignment.<n>We end our discussion by offering an alternative view on LLM alignment, framing the underspecified nature of its objectives as an opportunity.
arXiv Detail & Related papers (2025-02-27T13:26:07Z) - CitaLaw: Enhancing LLM with Citations in Legal Domain [5.249003454314636]
We propose CitaLaw, the first benchmark designed to evaluate LLMs' ability to produce legally sound responses with appropriate citations.<n>CitaLaw features a diverse set of legal questions for both laypersons and practitioners, paired with a comprehensive corpus of law articles and precedent cases as a reference pool.
arXiv Detail & Related papers (2024-12-19T06:14:20Z) - Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration [27.047809869136458]
Large Language Models (LLMs) could struggle to fully understand legal theories and perform legal reasoning tasks.
We introduce a challenging task (confusing charge prediction) to better evaluate LLMs' understanding of legal theories and reasoning capabilities.
We also propose a novel framework: Multi-Agent framework for improving complex Legal Reasoning capability.
arXiv Detail & Related papers (2024-10-03T14:15:00Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSim is a generative simulation platform designed to study strategic interactions and cooperative decision-making in large language models (LLMs)<n>We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%.<n>We show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability.
arXiv Detail & Related papers (2024-04-25T15:59:16Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
This paper explores Large Language Models' (LLMs) capabilities in applying tax law.
Our experiments demonstrate emerging legal understanding capabilities, with improved performance in each subsequent OpenAI model release.
Findings indicate that LLMs, particularly when combined with prompting enhancements and the correct legal texts, can perform at high levels of accuracy but not yet at expert tax lawyer levels.
arXiv Detail & Related papers (2023-06-12T12:40:48Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.