Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration
- URL: http://arxiv.org/abs/2310.00280v3
- Date: Wed, 21 Aug 2024 05:11:10 GMT
- Title: Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration
- Authors: Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu, Xipeng Qiu, Lingpeng Kong,
- Abstract summary: Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
- Score: 83.4031923134958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are evolving at an unprecedented pace and have exhibited considerable capability in the realm of natural language processing (NLP) with world knowledge. Benefiting from ultra-large-scale training corpora, a single LLM can manage typical NLP tasks competently. However, its performance in executing reasoning tasks is still confined by the limitations of its internal representations. To push this boundary further, we introduce Corex in this paper, a suite of novel general-purpose strategies that transform LLMs into autonomous agents pioneering multi-model collaborations for complex task-solving. Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes, which collectively work towards enhancing the factuality, faithfulness, and reliability of the reasoning process. These paradigms foster task-agnostic approaches that enable LLMs to ''think outside the box,'' thereby overcoming hallucinations and providing better solutions. Through extensive experiments across four different types of reasoning tasks, we demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods. Further results and in-depth analysis demonstrate the cost-effectiveness of our method, facilitating collaboration among different LLMs and promoting annotation efficiency.
Related papers
- When One LLM Drools, Multi-LLM Collaboration Rules [98.71562711695991]
We argue for multi-LLM collaboration to better represent the extensive diversity of data, skills, and people.
We organize existing multi-LLM collaboration methods into a hierarchy, based on the level of access and information exchange.
We envision multi-LLM collaboration as an essential path toward compositional intelligence and collaborative AI development.
arXiv Detail & Related papers (2025-02-06T21:13:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.
Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.
We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - MTMT: Consolidating Multiple Thinking Modes to Form a Thought Tree for Strengthening LLM [15.687878949848182]
Large language models (LLMs) have shown limitations in tasks requiring complex logical reasoning and multi-step problem-solving.
We introduce MTMT (Multi-thinking Modes Tree), a novel method that interacts with LLMs to construct a thought tree.
We evaluate the performance of MTMT under different parameter configurations, using GPT-4o mini as the base model.
arXiv Detail & Related papers (2024-12-05T09:05:30Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs' is a cutting-edge multi-agent framework designed to revolutionize the application of large language models.
Smurfs can enhance the model's ability to solve complex tasks at no additional cost.
arXiv Detail & Related papers (2024-05-09T17:49:04Z) - CoF-CoT: Enhancing Large Language Models with Coarse-to-Fine
Chain-of-Thought Prompting for Multi-domain NLU Tasks [46.862929778121675]
Chain-of-Thought prompting is popular in reasoning tasks, but its application to Natural Language Understanding (NLU) is under-explored.
Motivated by multi-step reasoning of Large Language Models (LLMs), we propose Coarse-to-Fine Chain-of-Thought (CoF-CoT) approach.
arXiv Detail & Related papers (2023-10-23T06:54:51Z) - Theory of Mind for Multi-Agent Collaboration via Large Language Models [5.2767999863286645]
This study evaluates Large Language Models (LLMs)-based agents in a multi-agent cooperative text game with Theory of Mind (ToM) inference tasks.
We observed evidence of emergent collaborative behaviors and high-order Theory of Mind capabilities among LLM-based agents.
arXiv Detail & Related papers (2023-10-16T07:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.