論文の概要: CT-GRAPH: Hierarchical Graph Attention Network for Anatomy-Guided CT Report Generation
- arxiv url: http://arxiv.org/abs/2508.05375v1
- Date: Thu, 07 Aug 2025 13:18:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.873272
- Title: CT-GRAPH: Hierarchical Graph Attention Network for Anatomy-Guided CT Report Generation
- Title(参考訳): CT-graphic: Anatomy-Guided CT 生成のための階層的グラフ注意ネットワーク
- Authors: Hamza Kalisch, Fabian Hörst, Jens Kleesiek, Ken Herrmann, Constantin Seibold,
- Abstract要約: 我々は,放射線学的知識を明示的にモデル化した階層型グラフアテンションネットワークであるCT-GRAPHを提案する。
本手法は, 事前訓練した3次元医用特徴エンコーダを用いて, グローバルな特徴と臓器レベルの特徴を抽出する。
提案手法は,現在の最先端手法よりもF1スコアが絶対7.9%向上したことを示す。
- 参考スコア(独自算出の注目度): 4.376648893167674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As medical imaging is central to diagnostic processes, automating the generation of radiology reports has become increasingly relevant to assist radiologists with their heavy workloads. Most current methods rely solely on global image features, failing to capture fine-grained organ relationships crucial for accurate reporting. To this end, we propose CT-GRAPH, a hierarchical graph attention network that explicitly models radiological knowledge by structuring anatomical regions into a graph, linking fine-grained organ features to coarser anatomical systems and a global patient context. Our method leverages pretrained 3D medical feature encoders to obtain global and organ-level features by utilizing anatomical masks. These features are further refined within the graph and then integrated into a large language model to generate detailed medical reports. We evaluate our approach for the task of report generation on the large-scale chest CT dataset CT-RATE. We provide an in-depth analysis of pretrained feature encoders for CT report generation and show that our method achieves a substantial improvement of absolute 7.9\% in F1 score over current state-of-the-art methods. The code is publicly available at https://github.com/hakal104/CT-GRAPH.
- Abstract(参考訳): 医用画像が診断過程の中心にあるため、放射線学レポートの自動作成は、放射線科医が重労働をこなすのを助けるためにますます重要になっている。
現在のほとんどの方法は、グローバルな画像の特徴のみに依存しており、正確な報告に欠かせない微細な臓器の関係を捉えていない。
そこで本研究では, 解剖学的領域をグラフに構造化し, 微細臓器の特徴を粗い解剖学的システムとグローバルな患者コンテキストに関連付けることにより, 放射線学的知識を明示的にモデル化する階層型グラフアテンションネットワークCT-GRAPHを提案する。
本手法は, 既訓練の3次元医用特徴エンコーダを用いて, 解剖学的マスクを用いて, グローバルな特徴と臓器レベルの特徴を得る。
これらの機能はグラフ内でさらに洗練され、それから大きな言語モデルに統合され、詳細な医療報告を生成する。
大規模胸部CTデータセットCT-RATEのレポート生成タスクに対するアプローチの評価を行った。
我々は,CTレポート生成のための事前訓練済み特徴エンコーダの詳細な解析を行い,現状の手法よりもF1スコアの絶対7.9倍の精度向上を実現していることを示す。
コードはhttps://github.com/hakal104/CT-GRAPHで公開されている。
関連論文リスト
- Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification [0.0]
3次元CTスキャンのマルチラベル分類は、データの体積特性と検出すべき異常の多様性のために難しい課題である。
畳み込みニューラルネットワーク(CNN)に基づく既存のディープラーニング手法は、長距離依存を効果的に捉えるのに苦労する。
我々は,3次元CTスキャン解析において,放射線技師のスクロール挙動をエミュレートする新しいグローバルアテンションモデルCT-Scrollを提案する。
論文 参考訳(メタデータ) (2025-03-26T15:47:50Z) - MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement [1.6355783973385114]
多視点認識知識強化型TansfoRmer(MvKeTR)
複数の解剖学的ビューから診断情報を効果的に合成するために、ビューアウェアのMVPAを提案する。
クエリボリュームに基づいて、最も類似したレポートを取得するために、Cross-Modal Knowledge Enhancer (CMKE) が考案されている。
論文 参考訳(メタデータ) (2024-11-27T12:58:23Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CTはCT-RATEに基づく大規模3次元胸部CT解釈データセットである。
私たちは、最新の強力なユニバーサルセグメンテーションと大きな言語モデルを活用して、元のデータセットを拡張します。
論文 参考訳(メタデータ) (2024-04-25T17:11:37Z) - GuideGen: A Text-Guided Framework for Full-torso Anatomy and CT Volume Generation [1.138481191622247]
GuideGenは、フリーフォームのテキストプロンプトに基づいて、胸部から骨盤まで、解剖学的マスクとそれに対応するCTボリュームを生成する制御可能なフレームワークである。
提案手法は,リアルなフルトルソ解剖を作成するためのテキスト条件セマンティックシンセサイザー,コントラストを意識した様々なコントラストレベルの詳細な特徴抽出用オートエンコーダ,CT画像,解剖学的セマンティクス,入力プロンプト間のアライメントを保証する潜在特徴生成装置の3つのコアコンポーネントを含む。
論文 参考訳(メタデータ) (2024-03-12T02:09:39Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - Self adaptive global-local feature enhancement for radiology report
generation [10.958641951927817]
グローバル・解剖学的領域の特徴を動的に融合して多粒性放射線学レポートを生成する新しいフレームワーク AGFNet を提案する。
まず,入力胸部X線(CXR)の解剖学的特徴と大域的特徴を抽出する。
そして,領域の特徴とグローバルな特徴を入力として,提案した自己適応型核融合ゲートモジュールは動的に多粒性情報を融合することができる。
最後に、キャプション生成装置は、多粒性特徴により放射線学レポートを生成する。
論文 参考訳(メタデータ) (2022-11-21T11:50:42Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
放射線技師の動作パターンを模倣する補助信号誘導知識デコーダ(ASGK)を提案する。
ASGKは、内的特徴融合と外部医療言語情報を統合して、医療知識の伝達と学習をガイドする。
論文 参考訳(メタデータ) (2020-06-06T01:00:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。