CT-GRAPH: Hierarchical Graph Attention Network for Anatomy-Guided CT Report Generation
- URL: http://arxiv.org/abs/2508.05375v1
- Date: Thu, 07 Aug 2025 13:18:03 GMT
- Title: CT-GRAPH: Hierarchical Graph Attention Network for Anatomy-Guided CT Report Generation
- Authors: Hamza Kalisch, Fabian Hörst, Jens Kleesiek, Ken Herrmann, Constantin Seibold,
- Abstract summary: We propose CT-GRAPH, a hierarchical graph attention network that explicitly models radiological knowledge.<n>Our method leverages pretrained 3D medical feature encoders to obtain global and organ-level features.<n>We show that our method achieves a substantial improvement of absolute 7.9% in F1 score over current state-of-the-art methods.
- Score: 4.376648893167674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As medical imaging is central to diagnostic processes, automating the generation of radiology reports has become increasingly relevant to assist radiologists with their heavy workloads. Most current methods rely solely on global image features, failing to capture fine-grained organ relationships crucial for accurate reporting. To this end, we propose CT-GRAPH, a hierarchical graph attention network that explicitly models radiological knowledge by structuring anatomical regions into a graph, linking fine-grained organ features to coarser anatomical systems and a global patient context. Our method leverages pretrained 3D medical feature encoders to obtain global and organ-level features by utilizing anatomical masks. These features are further refined within the graph and then integrated into a large language model to generate detailed medical reports. We evaluate our approach for the task of report generation on the large-scale chest CT dataset CT-RATE. We provide an in-depth analysis of pretrained feature encoders for CT report generation and show that our method achieves a substantial improvement of absolute 7.9\% in F1 score over current state-of-the-art methods. The code is publicly available at https://github.com/hakal104/CT-GRAPH.
Related papers
- Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification [0.0]
Multi-label classification of 3D CT scans is a challenging task due to the volumetric nature of the data and the variety of anomalies to be detected.<n>Existing deep learning methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies effectively.<n>We present CT-Scroll, a novel global-local attention model specifically designed to emulate the scrolling behavior of radiologists during the analysis of 3D CT scans.
arXiv Detail & Related papers (2025-03-26T15:47:50Z) - MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement [1.6355783973385114]
Multi-view perception knowledge-enhanced TansfoRmer (MvKeTR)<n>MVPA with view-aware attention is proposed to synthesize diagnostic information from multiple anatomical views effectively.<n>Cross-Modal Knowledge Enhancer (CMKE) is devised to retrieve the most similar reports based on the query volume.
arXiv Detail & Related papers (2024-11-27T12:58:23Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CT is a large-scale, region-guided 3D chest CT interpretation dataset based on CT-RATE.
We leverage the latest powerful universal segmentation and large language models to extend the original datasets.
arXiv Detail & Related papers (2024-04-25T17:11:37Z) - GuideGen: A Text-Guided Framework for Full-torso Anatomy and CT Volume Generation [1.138481191622247]
GuideGen is a controllable framework that generates anatomical masks and corresponding CT volumes for the entire torso-from chest to pelvis-based on free-form text prompts.
Our approach includes three core components: a text-conditional semantic synthesizer for creating realistic full-torso anatomies; a contrast-aware autoencoder for detailed, high-fidelity feature extraction across varying contrast levels; and a latent feature generator that ensures alignment between CT images, anatomical semantics and input prompts.
arXiv Detail & Related papers (2024-03-12T02:09:39Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Self adaptive global-local feature enhancement for radiology report
generation [10.958641951927817]
We propose a novel framework AGFNet to dynamically fuse the global and anatomy region feature to generate multi-grained radiology report.
Firstly, we extract important anatomy region features and global features of input Chest X-ray (CXR)
Then, with the region features and the global features as input, our proposed self-adaptive fusion gate module could dynamically fuse multi-granularity information.
Finally, the captioning generator generates the radiology reports through multi-granularity features.
arXiv Detail & Related papers (2022-11-21T11:50:42Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
We propose an Auxiliary Signal-Guided Knowledge-Decoder (ASGK) to mimic radiologists' working patterns.
ASGK integrates internal visual feature fusion and external medical linguistic information to guide medical knowledge transfer and learning.
arXiv Detail & Related papers (2020-06-06T01:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.