Does Multimodality Improve Recommender Systems as Expected? A Critical Analysis and Future Directions
- URL: http://arxiv.org/abs/2508.05377v1
- Date: Thu, 07 Aug 2025 13:21:00 GMT
- Title: Does Multimodality Improve Recommender Systems as Expected? A Critical Analysis and Future Directions
- Authors: Hongyu Zhou, Yinan Zhang, Aixin Sun, Zhiqi Shen,
- Abstract summary: Multimodal recommendation systems are increasingly popular for their potential to improve performance by integrating diverse data types.<n>However, the actual benefits of this integration remain unclear, raising questions about when and how it truly enhances recommendations.<n>We propose a structured evaluation framework to systematically assess multimodal recommendations across four dimensions.
- Score: 52.21847626165085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal recommendation systems are increasingly popular for their potential to improve performance by integrating diverse data types. However, the actual benefits of this integration remain unclear, raising questions about when and how it truly enhances recommendations. In this paper, we propose a structured evaluation framework to systematically assess multimodal recommendations across four dimensions: Comparative Efficiency, Recommendation Tasks, Recommendation Stages, and Multimodal Data Integration. We benchmark a set of reproducible multimodal models against strong traditional baselines and evaluate their performance on different platforms. Our findings show that multimodal data is particularly beneficial in sparse interaction scenarios and during the recall stage of recommendation pipelines. We also observe that the importance of each modality is task-specific, where text features are more useful in e-commerce and visual features are more effective in short-video recommendations. Additionally, we explore different integration strategies and model sizes, finding that Ensemble-Based Learning outperforms Fusion-Based Learning, and that larger models do not necessarily deliver better results. To deepen our understanding, we include case studies and review findings from other recommendation domains. Our work provides practical insights for building efficient and effective multimodal recommendation systems, emphasizing the need for thoughtful modality selection, integration strategies, and model design.
Related papers
- Joint Modeling in Recommendations: A Survey [46.000357352884926]
Joint modeling approaches are central to overcoming limitations by integrating diverse tasks, scenarios, modalities, and behaviors in the recommendation process.<n>We define the scope of joint modeling through four distinct dimensions: multi-task, multi-scenario, multi-modal, and multi-behavior modeling.<n>We highlight several promising avenues for future exploration in joint modeling for recommendations and provide a concise conclusion to our findings.
arXiv Detail & Related papers (2025-02-28T16:14:00Z) - Ducho meets Elliot: Large-scale Benchmarks for Multimodal Recommendation [9.506245109666907]
Multi-faceted features characterizing products and services may influence each customer on online selling platforms differently.
The common multimodal recommendation pipeline involves (i) extracting multimodal features, (ii) refining their high-level representations to suit the recommendation task, and (iv) predicting the user-item score.
This paper settles as the first attempt to offer a large-scale benchmarking for multimodal recommender systems, with a specific focus on multimodal extractors.
arXiv Detail & Related papers (2024-09-24T08:29:10Z) - Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations [15.143224593682012]
We propose a novel recommendation strategy that combines relevance and diversity by a copula function.
We use diversity as a surrogate of the amount of knowledge obtained by the user while interacting with the system.
Our strategy outperforms several state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-07T13:48:24Z) - Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems [60.91599969408029]
optimizing multiple objectives simultaneously is an important task for recommendation platforms.
Existing multi-objective recommender systems do not systematically consider such dynamic relationships.
arXiv Detail & Related papers (2024-07-04T02:19:49Z) - BiVRec: Bidirectional View-based Multimodal Sequential Recommendation [55.87443627659778]
We propose an innovative framework, BivRec, that jointly trains the recommendation tasks in both ID and multimodal views.
BivRec achieves state-of-the-art performance on five datasets and showcases various practical advantages.
arXiv Detail & Related papers (2024-02-27T09:10:41Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
We analyze multimodal recommender systems from the novel perspective of flat local minima.
We propose a concise yet effective gradient strategy called Mirror Gradient (MG)
We find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models.
arXiv Detail & Related papers (2024-02-17T12:27:30Z) - Improving Sequential Recommendations with LLMs [8.819438328085925]
Large Language Models (LLMs) can be used to build or improve sequential recommendation approaches.<n>We conduct extensive experiments on three datasets to obtain a comprehensive picture of the performance of each approach.
arXiv Detail & Related papers (2024-02-02T11:52:07Z) - MM-GEF: Multi-modal representation meet collaborative filtering [43.88159639990081]
We propose a graph-based item structure enhancement method MM-GEF: Multi-Modal recommendation with Graph Early-Fusion.
MM-GEF learns refined item representations by injecting structural information obtained from both multi-modal and collaborative signals.
arXiv Detail & Related papers (2023-08-14T15:47:36Z) - ItemSage: Learning Product Embeddings for Shopping Recommendations at
Pinterest [60.841761065439414]
At Pinterest, we build a single set of product embeddings called ItemSage to provide relevant recommendations in all shopping use cases.
This approach has led to significant improvements in engagement and conversion metrics, while reducing both infrastructure and maintenance cost.
arXiv Detail & Related papers (2022-05-24T02:28:58Z) - MultiHead MultiModal Deep Interest Recommendation Network [0.0]
This paper adds multi-head and multi-modal modules to the DINciteAuthors01 model.
Experiments show that the multi-head multi-modal DIN improves the recommendation prediction effect, and outperforms current state-of-the-art methods on various comprehensive indicators.
arXiv Detail & Related papers (2021-10-19T18:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.