Joint Modeling in Recommendations: A Survey
- URL: http://arxiv.org/abs/2502.21195v1
- Date: Fri, 28 Feb 2025 16:14:00 GMT
- Title: Joint Modeling in Recommendations: A Survey
- Authors: Xiangyu Zhao, Yichao Wang, Bo Chen, Jingtong Gao, Yuhao Wang, Xiaopeng Li, Pengyue Jia, Qidong Liu, Huifeng Guo, Ruiming Tang,
- Abstract summary: Joint modeling approaches are central to overcoming limitations by integrating diverse tasks, scenarios, modalities, and behaviors in the recommendation process.<n>We define the scope of joint modeling through four distinct dimensions: multi-task, multi-scenario, multi-modal, and multi-behavior modeling.<n>We highlight several promising avenues for future exploration in joint modeling for recommendations and provide a concise conclusion to our findings.
- Score: 46.000357352884926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In today's digital landscape, Deep Recommender Systems (DRS) play a crucial role in navigating and customizing online content for individual preferences. However, conventional methods, which mainly depend on single recommendation task, scenario, data modality and user behavior, are increasingly seen as insufficient due to their inability to accurately reflect users' complex and changing preferences. This gap underscores the need for joint modeling approaches, which are central to overcoming these limitations by integrating diverse tasks, scenarios, modalities, and behaviors in the recommendation process, thus promising significant enhancements in recommendation precision, efficiency, and customization. In this paper, we comprehensively survey the joint modeling methods in recommendations. We begin by defining the scope of joint modeling through four distinct dimensions: multi-task, multi-scenario, multi-modal, and multi-behavior modeling. Subsequently, we examine these methods in depth, identifying and summarizing their underlying paradigms based on the latest advancements and potential research trajectories. Ultimately, we highlight several promising avenues for future exploration in joint modeling for recommendations and provide a concise conclusion to our findings.
Related papers
- Slow Thinking for Sequential Recommendation [88.46598279655575]
We present a novel slow thinking recommendation model, named STREAM-Rec.
Our approach is capable of analyzing historical user behavior, generating a multi-step, deliberative reasoning process, and delivering personalized recommendations.
In particular, we focus on two key challenges: (1) identifying the suitable reasoning patterns in recommender systems, and (2) exploring how to effectively stimulate the reasoning capabilities of traditional recommenders.
arXiv Detail & Related papers (2025-04-13T15:53:30Z) - Preference-Guided Diffusion for Multi-Objective Offline Optimization [64.08326521234228]
We propose a preference-guided diffusion model for offline multi-objective optimization.
Our guidance is a preference model trained to predict the probability that one design dominates another.
Our results highlight the effectiveness of classifier-guided diffusion models in generating diverse and high-quality solutions.
arXiv Detail & Related papers (2025-03-21T16:49:38Z) - DLCRec: A Novel Approach for Managing Diversity in LLM-Based Recommender Systems [9.433227503973077]
We propose a novel framework designed to enable fine-grained control over diversity in LLM-based recommendations.<n>Unlike traditional methods, DLCRec adopts a fine-grained task decomposition strategy, breaking down the recommendation process into three sub-tasks.<n>We introduce two data augmentation techniques that enhance the model's robustness to noisy and out-of-distribution data.
arXiv Detail & Related papers (2024-08-22T15:10:56Z) - Towards Bridging the Cross-modal Semantic Gap for Multi-modal Recommendation [12.306686291299146]
Multi-modal recommendation greatly enhances the performance of recommender systems.
Most existing multi-modal recommendation models exploit multimedia information propagation processes to enrich item representations.
We propose a novel framework to bridge the semantic gap between modalities and extract fine-grained multi-view semantic information.
arXiv Detail & Related papers (2024-07-07T15:56:03Z) - Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement [5.734747179463411]
We propose a Contrastive Learning sequential recommendation method based on Multi-Intention Disentanglement (MIDCL)
In our work, intentions are recognized as dynamic and diverse, and user behaviors are often driven by current multi-intentions.
We propose two types of contrastive learning paradigms for finding the most relevant user's interactive intention, and maximizing the mutual information of positive sample pairs.
arXiv Detail & Related papers (2024-04-28T15:13:36Z) - Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond [87.1712108247199]
Our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP)
We develop a generic and personalization generative framework, that can handle a wide range of personalized needs.
Our methodology enhances the capabilities of foundational language models for personalized tasks.
arXiv Detail & Related papers (2024-03-15T20:21:31Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
We are the first to apply the Fisher-Merging method to Sequential Recommendation, addressing and resolving practical challenges associated with it.
We demonstrate the effectiveness of our proposed methods, highlighting their potential to advance the state-of-the-art in sequential learning and recommendation systems.
arXiv Detail & Related papers (2023-07-05T05:58:56Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
We introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the Recommender Systems (RS) setting.
SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations.
Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.
arXiv Detail & Related papers (2021-10-28T13:22:45Z) - MultiHead MultiModal Deep Interest Recommendation Network [0.0]
This paper adds multi-head and multi-modal modules to the DINciteAuthors01 model.
Experiments show that the multi-head multi-modal DIN improves the recommendation prediction effect, and outperforms current state-of-the-art methods on various comprehensive indicators.
arXiv Detail & Related papers (2021-10-19T18:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.