LLM-based Multi-Agent Copilot for Quantum Sensor
- URL: http://arxiv.org/abs/2508.05421v1
- Date: Thu, 07 Aug 2025 14:14:08 GMT
- Title: LLM-based Multi-Agent Copilot for Quantum Sensor
- Authors: Rong Sha, Binglin Wang, Jun Yang, Xiaoxiao Ma, Chengkun Wu, Liang Yan, Chao Zhou, Jixun Liu, Guochao Wang, Shuhua Yan, Lingxiao Zhu,
- Abstract summary: QCopilot is a multi-agent framework integrating external knowledge access, active learning, and uncertainty quantification for quantum sensor design and diagnosis.<n>Applying QCopilot to atom cooling experiments, we generated 10$rm8$ sub-$rmmu$K atoms without any human intervention within a few hours.
- Score: 6.110308943823486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLM) exhibit broad utility but face limitations in quantum sensor development, stemming from interdisciplinary knowledge barriers and involving complex optimization processes. Here we present QCopilot, an LLM-based multi-agent framework integrating external knowledge access, active learning, and uncertainty quantification for quantum sensor design and diagnosis. Comprising commercial LLMs with few-shot prompt engineering and vector knowledge base, QCopilot employs specialized agents to adaptively select optimization methods, automate modeling analysis, and independently perform problem diagnosis. Applying QCopilot to atom cooling experiments, we generated 10${}^{\rm{8}}$ sub-$\rm{\mu}$K atoms without any human intervention within a few hours, representing $\sim$100$\times$ speedup over manual experimentation. Notably, by continuously accumulating prior knowledge and enabling dynamic modeling, QCopilot can autonomously identify anomalous parameters in multi-parameter experimental settings. Our work reduces barriers to large-scale quantum sensor deployment and readily extends to other quantum information systems.
Related papers
- Quantum Knowledge Distillation for Large Language Models [10.023534560183919]
We propose a Quantum knowledge Distillation model for Large Language Models (QD-LLM)<n>In classical simulation, QD-LLM outperforms several mainstream distillation methods on multiple text classification tasks.<n>We deploy the obtained circuits on the Baihua superconducting quantum processor via the Quafu platform to assess practical feasibility.
arXiv Detail & Related papers (2025-05-19T14:56:24Z) - El Agente: An Autonomous Agent for Quantum Chemistry [3.6593051631801106]
El Agente Q is a multi-agent system that generates and executes quantum chemistry from natural language user prompts.<n>El Agente Q is benchmarked on six university-level course exercises and two case studies, demonstrating robust problem-solving performance.
arXiv Detail & Related papers (2025-05-05T09:07:22Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Application of machine learning to experimental design in quantum mechanics [0.5461938536945721]
We present a machine learning technique that can optimize the precision of quantum sensors.
The framework has been implemented in the Python package qsensoropt.
We have explored some applications of this technique to NV centers and photonic circuits.
arXiv Detail & Related papers (2024-03-15T14:07:46Z) - Model-aware reinforcement learning for high-performance Bayesian experimental design in quantum metrology [0.4999814847776097]
Quantum sensors offer control flexibility during estimation by allowing manipulation by the experimenter across various parameters.<n>We introduce a versatile procedure capable of optimizing a wide range of problems in quantum metrology, estimation, and hypothesis testing.<n>We combine model-aware reinforcement learning (RL) with Bayesian estimation based on particle filtering.
arXiv Detail & Related papers (2023-12-28T12:04:15Z) - Optical Quantum Sensing for Agnostic Environments via Deep Learning [59.088205627308]
We introduce an innovative Deep Learning-based Quantum Sensing scheme.
It enables optical quantum sensors to attain Heisenberg limit (HL) in agnostic environments.
Our findings offer a new lens through which to accelerate optical quantum sensing tasks.
arXiv Detail & Related papers (2023-11-13T09:46:05Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver.
DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics.
We present various benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-dependent problem.
arXiv Detail & Related papers (2022-02-25T20:46:08Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.