MyCulture: Exploring Malaysia's Diverse Culture under Low-Resource Language Constraints
- URL: http://arxiv.org/abs/2508.05429v1
- Date: Thu, 07 Aug 2025 14:17:43 GMT
- Title: MyCulture: Exploring Malaysia's Diverse Culture under Low-Resource Language Constraints
- Authors: Zhong Ken Hew, Jia Xin Low, Sze Jue Yang, Chee Seng chan,
- Abstract summary: MyCulture is a benchmark designed to comprehensively evaluate Large Language Models (LLMs) on Malaysian culture.<n>Unlike conventional benchmarks, MyCulture employs a novel open-ended multiple-choice question format without predefined options.<n>We analyze structural bias by comparing model performance on structured versus free-form outputs, and assess language bias through multilingual prompt variations.
- Score: 7.822567458977689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) often exhibit cultural biases due to training data dominated by high-resource languages like English and Chinese. This poses challenges for accurately representing and evaluating diverse cultural contexts, particularly in low-resource language settings. To address this, we introduce MyCulture, a benchmark designed to comprehensively evaluate LLMs on Malaysian culture across six pillars: arts, attire, customs, entertainment, food, and religion presented in Bahasa Melayu. Unlike conventional benchmarks, MyCulture employs a novel open-ended multiple-choice question format without predefined options, thereby reducing guessing and mitigating format bias. We provide a theoretical justification for the effectiveness of this open-ended structure in improving both fairness and discriminative power. Furthermore, we analyze structural bias by comparing model performance on structured versus free-form outputs, and assess language bias through multilingual prompt variations. Our evaluation across a range of regional and international LLMs reveals significant disparities in cultural comprehension, highlighting the urgent need for culturally grounded and linguistically inclusive benchmarks in the development and assessment of LLMs.
Related papers
- MCEval: A Dynamic Framework for Fair Multilingual Cultural Evaluation of LLMs [25.128936333806678]
Large language models exhibit cultural biases and limited cross-cultural understanding capabilities.<n>We propose MCEval, a novel multilingual evaluation framework that employs dynamic cultural question construction.
arXiv Detail & Related papers (2025-07-13T16:24:35Z) - Nunchi-Bench: Benchmarking Language Models on Cultural Reasoning with a Focus on Korean Superstition [0.0]
We introduce Nunchi-Bench, a benchmark designed to evaluate large language models' cultural understanding.<n>The benchmark consists of 247 questions spanning 31 topics, assessing factual knowledge, culturally appropriate advice, and situational interpretation.<n>We evaluate multilingual LLMs in both Korean and English to analyze their ability to reason about Korean cultural contexts.
arXiv Detail & Related papers (2025-07-05T11:52:09Z) - Disentangling Language and Culture for Evaluating Multilingual Large Language Models [48.06219053598005]
This paper introduces a Dual Evaluation Framework to comprehensively assess the multilingual capabilities of LLMs.<n>By decomposing the evaluation along the dimensions of linguistic medium and cultural context, this framework enables a nuanced analysis of LLMs' ability to process questions cross-lingually.
arXiv Detail & Related papers (2025-05-30T14:25:45Z) - MAKIEval: A Multilingual Automatic WiKidata-based Framework for Cultural Awareness Evaluation for LLMs [26.806566827956875]
MAKIEval is an automatic multilingual framework for evaluating cultural awareness in large language models.<n>It automatically identifies cultural entities in model outputs and links them to structured knowledge.<n>We assess 7 LLMs developed from different parts of the world, encompassing both open-source and proprietary systems.
arXiv Detail & Related papers (2025-05-27T19:29:40Z) - CulFiT: A Fine-grained Cultural-aware LLM Training Paradigm via Multilingual Critique Data Synthesis [41.261808170896686]
CulFiT is a novel training paradigm that leverages multilingual data and fine-grained reward modeling to enhance cultural sensitivity and inclusivity.<n>Our approach synthesizes diverse cultural-related questions, constructs critique data in culturally relevant languages, and employs fine-grained rewards to decompose cultural texts into verifiable knowledge units.
arXiv Detail & Related papers (2025-05-26T04:08:26Z) - KULTURE Bench: A Benchmark for Assessing Language Model in Korean Cultural Context [5.693660906643207]
We introduce KULTURE Bench, an evaluation framework specifically designed for Korean culture.<n>It is designed to assess language models' cultural comprehension and reasoning capabilities at the word, sentence, and paragraph levels.<n>The results show that there is still significant room for improvement in the models' understanding of texts related to the deeper aspects of Korean culture.
arXiv Detail & Related papers (2024-12-10T07:20:51Z) - Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation [71.59208664920452]
Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks.<n>We show that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge.<n>We release Global MMLU, an improved MMLU with evaluation coverage across 42 languages.
arXiv Detail & Related papers (2024-12-04T13:27:09Z) - All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages [73.93600813999306]
ALM-bench is the largest and most comprehensive effort to date for evaluating LMMs across 100 languages.<n>It challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages.<n>The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions.
arXiv Detail & Related papers (2024-11-25T15:44:42Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
We focus on extrinsic evaluation of cultural competence in two text generation tasks.
We evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts.
We find weak correlations between text similarity of outputs for different countries and the cultural values of these countries.
arXiv Detail & Related papers (2024-06-17T14:03:27Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
Large language models (LLMs) have demonstrated substantial commonsense understanding.
This paper examines the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks.
arXiv Detail & Related papers (2024-05-07T20:28:34Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
This paper identifies a cultural dominance issue within large language models (LLMs)
LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages.
arXiv Detail & Related papers (2023-10-19T05:38:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.