Nunchi-Bench: Benchmarking Language Models on Cultural Reasoning with a Focus on Korean Superstition
- URL: http://arxiv.org/abs/2507.04014v1
- Date: Sat, 05 Jul 2025 11:52:09 GMT
- Title: Nunchi-Bench: Benchmarking Language Models on Cultural Reasoning with a Focus on Korean Superstition
- Authors: Kyuhee Kim, Sangah Lee,
- Abstract summary: We introduce Nunchi-Bench, a benchmark designed to evaluate large language models' cultural understanding.<n>The benchmark consists of 247 questions spanning 31 topics, assessing factual knowledge, culturally appropriate advice, and situational interpretation.<n>We evaluate multilingual LLMs in both Korean and English to analyze their ability to reason about Korean cultural contexts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) become key advisors in various domains, their cultural sensitivity and reasoning skills are crucial in multicultural environments. We introduce Nunchi-Bench, a benchmark designed to evaluate LLMs' cultural understanding, with a focus on Korean superstitions. The benchmark consists of 247 questions spanning 31 topics, assessing factual knowledge, culturally appropriate advice, and situational interpretation. We evaluate multilingual LLMs in both Korean and English to analyze their ability to reason about Korean cultural contexts and how language variations affect performance. To systematically assess cultural reasoning, we propose a novel evaluation strategy with customized scoring metrics that capture the extent to which models recognize cultural nuances and respond appropriately. Our findings highlight significant challenges in LLMs' cultural reasoning. While models generally recognize factual information, they struggle to apply it in practical scenarios. Furthermore, explicit cultural framing enhances performance more effectively than relying solely on the language of the prompt. To support further research, we publicly release Nunchi-Bench alongside a leaderboard.
Related papers
- MyCulture: Exploring Malaysia's Diverse Culture under Low-Resource Language Constraints [7.822567458977689]
MyCulture is a benchmark designed to comprehensively evaluate Large Language Models (LLMs) on Malaysian culture.<n>Unlike conventional benchmarks, MyCulture employs a novel open-ended multiple-choice question format without predefined options.<n>We analyze structural bias by comparing model performance on structured versus free-form outputs, and assess language bias through multilingual prompt variations.
arXiv Detail & Related papers (2025-08-07T14:17:43Z) - MultiNRC: A Challenging and Native Multilingual Reasoning Evaluation Benchmark for LLMs [56.87573414161703]
We introduce the Multilingual Native Reasoning Challenge (MultiNRC), a benchmark to assess Large Language Models (LLMs)<n>MultiNRC covers four core reasoning categories: language-specific linguistic reasoning, wordplay & riddles, cultural/tradition reasoning, and math reasoning with cultural relevance.<n>For cultural/tradition reasoning and math reasoning with cultural relevance, we also provide English equivalent translations of the multilingual questions by manual translation from native speakers fluent in English.
arXiv Detail & Related papers (2025-07-23T12:56:31Z) - MCEval: A Dynamic Framework for Fair Multilingual Cultural Evaluation of LLMs [25.128936333806678]
Large language models exhibit cultural biases and limited cross-cultural understanding capabilities.<n>We propose MCEval, a novel multilingual evaluation framework that employs dynamic cultural question construction.
arXiv Detail & Related papers (2025-07-13T16:24:35Z) - Disentangling Language and Culture for Evaluating Multilingual Large Language Models [48.06219053598005]
This paper introduces a Dual Evaluation Framework to comprehensively assess the multilingual capabilities of LLMs.<n>By decomposing the evaluation along the dimensions of linguistic medium and cultural context, this framework enables a nuanced analysis of LLMs' ability to process questions cross-lingually.
arXiv Detail & Related papers (2025-05-30T14:25:45Z) - MAKIEval: A Multilingual Automatic WiKidata-based Framework for Cultural Awareness Evaluation for LLMs [26.806566827956875]
MAKIEval is an automatic multilingual framework for evaluating cultural awareness in large language models.<n>It automatically identifies cultural entities in model outputs and links them to structured knowledge.<n>We assess 7 LLMs developed from different parts of the world, encompassing both open-source and proprietary systems.
arXiv Detail & Related papers (2025-05-27T19:29:40Z) - KULTURE Bench: A Benchmark for Assessing Language Model in Korean Cultural Context [5.693660906643207]
We introduce KULTURE Bench, an evaluation framework specifically designed for Korean culture.<n>It is designed to assess language models' cultural comprehension and reasoning capabilities at the word, sentence, and paragraph levels.<n>The results show that there is still significant room for improvement in the models' understanding of texts related to the deeper aspects of Korean culture.
arXiv Detail & Related papers (2024-12-10T07:20:51Z) - Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation [71.59208664920452]
Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks.<n>We show that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge.<n>We release Global MMLU, an improved MMLU with evaluation coverage across 42 languages.
arXiv Detail & Related papers (2024-12-04T13:27:09Z) - Translating Across Cultures: LLMs for Intralingual Cultural Adaptation [12.5954253354303]
We define the task of cultural adaptation and create an evaluation framework to evaluate the performance of modern LLMs.
We analyze possible issues with automatic adaptation.
We hope that this paper will offer more insight into the cultural understanding of LLMs and their creativity in cross-cultural scenarios.
arXiv Detail & Related papers (2024-06-20T17:06:58Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
We focus on extrinsic evaluation of cultural competence in two text generation tasks.
We evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts.
We find weak correlations between text similarity of outputs for different countries and the cultural values of these countries.
arXiv Detail & Related papers (2024-06-17T14:03:27Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
Large language models (LLMs) have demonstrated substantial commonsense understanding.
This paper examines the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks.
arXiv Detail & Related papers (2024-05-07T20:28:34Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
This paper identifies a cultural dominance issue within large language models (LLMs)
LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages.
arXiv Detail & Related papers (2023-10-19T05:38:23Z) - HAE-RAE Bench: Evaluation of Korean Knowledge in Language Models [0.0]
We introduce the HAE-RAE Bench, a dataset curated to challenge models lacking Korean cultural and contextual depth.
The dataset encompasses six downstream tasks across four domains: vocabulary, history, general knowledge, and reading comprehension.
arXiv Detail & Related papers (2023-09-06T04:38:16Z) - Benchmarking Machine Translation with Cultural Awareness [50.183458829028226]
Translating culture-related content is vital for effective cross-cultural communication.
Many culture-specific items (CSIs) often lack viable translations across languages.
This difficulty hinders the analysis of cultural awareness of machine translation systems.
arXiv Detail & Related papers (2023-05-23T17:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.