LLMEval-3: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models
- URL: http://arxiv.org/abs/2508.05452v1
- Date: Thu, 07 Aug 2025 14:46:30 GMT
- Title: LLMEval-3: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models
- Authors: Ming Zhang, Yujiong Shen, Jingyi Deng, Yuhui Wang, Yue Zhang, Junzhe Wang, Shichun Liu, Shihan Dou, Huayu Sha, Qiyuan Peng, Changhao Jiang, Jingqi Tong, Yilong Wu, Zhihao Zhang, Mingqi Wu, Zhiheng Xi, Mingxu Chai, Tao Liang, Zhihui Fei, Zhen Wang, Mingyang Wan, Guojun Ma, Tao Gui, Qi Zhang, Xuanjing Huang,
- Abstract summary: Existing evaluation of Large Language Models (LLMs) on static benchmarks is vulnerable to data contamination and leaderboard overfitting.<n>We introduce LLMEval-3, a framework for dynamic evaluation of LLMs.<n>LLEval-3 is built on a proprietary bank of 220k graduate-level questions, from which it dynamically samples unseen test sets for each evaluation run.
- Score: 51.55869466207234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing evaluation of Large Language Models (LLMs) on static benchmarks is vulnerable to data contamination and leaderboard overfitting, critical issues that obscure true model capabilities. To address this, we introduce LLMEval-3, a framework for dynamic evaluation of LLMs. LLMEval-3 is built on a proprietary bank of 220k graduate-level questions, from which it dynamically samples unseen test sets for each evaluation run. Its automated pipeline ensures integrity via contamination-resistant data curation, a novel anti-cheating architecture, and a calibrated LLM-as-a-judge process achieving 90% agreement with human experts, complemented by a relative ranking system for fair comparison. An 20-month longitudinal study of nearly 50 leading models reveals a performance ceiling on knowledge memorization and exposes data contamination vulnerabilities undetectable by static benchmarks. The framework demonstrates exceptional robustness in ranking stability and consistency, providing strong empirical validation for the dynamic evaluation paradigm. LLMEval-3 offers a robust and credible methodology for assessing the true capabilities of LLMs beyond leaderboard scores, promoting the development of more trustworthy evaluation standards.
Related papers
- Reliable Decision Support with LLMs: A Framework for Evaluating Consistency in Binary Text Classification Applications [0.7124971549479361]
This study introduces a framework for evaluating consistency in large language model (LLM) binary text classification.<n>We determine sample size requirements, develop metrics for invalid responses, and evaluate intra- and inter-rater reliability.
arXiv Detail & Related papers (2025-05-20T21:12:58Z) - Cer-Eval: Certifiable and Cost-Efficient Evaluation Framework for LLMs [29.764833226591012]
This paper introduces a certifiable and cost-efficient evaluation framework for large language models (LLMs)<n>We use test sample complexity'' to quantify the number of test points needed for a certifiable evaluation and derive tight bounds on test sample complexity.<n>Based on the developed theory, we develop a partition-based algorithm, named Cer-Eval, that adaptively selects test points to minimize the cost of LLM evaluation.
arXiv Detail & Related papers (2025-05-02T17:05:01Z) - The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
Large Language Models (LLMs) must balance between rejecting harmful requests for safety and accommodating legitimate ones for utility.<n>This paper presents a Direct Preference Optimization (DPO) based alignment framework that achieves better overall performance.<n>We analyze experimental results obtained from testing DeepSeek-R1 on our benchmark and reveal the critical ethical concerns raised by this highly acclaimed model.
arXiv Detail & Related papers (2025-01-20T06:35:01Z) - Self-Evolving Critique Abilities in Large Language Models [59.861013614500024]
This paper explores enhancing critique abilities of Large Language Models (LLMs)<n>We introduce SCRIT, a framework that trains LLMs with self-generated data to evolve their critique abilities.<n>Our analysis reveals that SCRIT's performance scales positively with data and model size.
arXiv Detail & Related papers (2025-01-10T05:51:52Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
Large Language Models (LLMs) excel at standardized tests while failing to demonstrate genuine language understanding and adaptability.<n>Our systematic analysis of NLP evaluation frameworks reveals pervasive vulnerabilities across the evaluation spectrum.<n>We lay the groundwork for new evaluation methods that resist manipulation, minimize data contamination, and assess domain-specific tasks.
arXiv Detail & Related papers (2024-12-02T20:49:21Z) - CARMO: Dynamic Criteria Generation for Context-Aware Reward Modelling [27.86204841898399]
Reward modeling in large language models is susceptible to reward hacking.<n>We propose Context-Aware Reward Modeling (CARMO) to mitigate this problem.<n>We establish a new state-of-the-art performance in zero-shot settings for generative models, achieving a 2.1% improvement on Reward Bench.
arXiv Detail & Related papers (2024-10-28T21:18:49Z) - StructEval: Deepen and Broaden Large Language Model Assessment via Structured Evaluation [46.59416831869014]
We propose a novel evaluation framework referred to as StructEval.
Starting from an atomic test objective, StructEval deepens and broadens the evaluation by conducting a structured assessment across multiple cognitive levels and critical concepts.
Experiments on three widely-used benchmarks demonstrate that StructEval serves as a reliable tool for resisting the risk of data contamination.
arXiv Detail & Related papers (2024-08-06T16:28:30Z) - FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models [36.273451767886726]
FreeEval is a modular and scalable framework crafted to enable trustworthy and efficient automatic evaluations of large language models.
FreeEval's unified abstractions simplify the integration and improve the transparency of diverse evaluation methodologies.
The framework integrates meta-evaluation techniques like human evaluation and data contamination detection, which, along with dynamic evaluation modules, enhance the fairness of the evaluation outcomes.
arXiv Detail & Related papers (2024-04-09T04:17:51Z) - KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models [53.84677081899392]
KIEval is a Knowledge-grounded Interactive Evaluation framework for large language models.
It incorporates an LLM-powered "interactor" role for the first time to accomplish a dynamic contamination-resilient evaluation.
Extensive experiments on seven leading LLMs across five datasets validate KIEval's effectiveness and generalization.
arXiv Detail & Related papers (2024-02-23T01:30:39Z) - Large Language Models as Automated Aligners for benchmarking
Vision-Language Models [48.4367174400306]
Vision-Language Models (VLMs) have reached a new level of sophistication, showing notable competence in executing intricate cognition and reasoning tasks.
Existing evaluation benchmarks, primarily relying on rigid, hand-crafted datasets, face significant limitations in assessing the alignment of these increasingly anthropomorphic models with human intelligence.
In this work, we address the limitations via Auto-Bench, which delves into exploring LLMs as proficient curation, measuring the alignment betweenVLMs and human intelligence and value through automatic data curation and assessment.
arXiv Detail & Related papers (2023-11-24T16:12:05Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.