Self-Evolving Critique Abilities in Large Language Models
- URL: http://arxiv.org/abs/2501.05727v2
- Date: Mon, 04 Aug 2025 02:14:13 GMT
- Title: Self-Evolving Critique Abilities in Large Language Models
- Authors: Zhengyang Tang, Ziniu Li, Zhenyang Xiao, Tian Ding, Ruoyu Sun, Benyou Wang, Dayiheng Liu, Fei Huang, Tianyu Liu, Bowen Yu, Junyang Lin,
- Abstract summary: This paper explores enhancing critique abilities of Large Language Models (LLMs)<n>We introduce SCRIT, a framework that trains LLMs with self-generated data to evolve their critique abilities.<n>Our analysis reveals that SCRIT's performance scales positively with data and model size.
- Score: 59.861013614500024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite their remarkable performance, Large Language Models (LLMs) face a critical challenge: providing feedback for tasks where human evaluation is difficult or where LLMs potentially outperform humans. In such scenarios, leveraging the critique ability of LLMs themselves - identifying and correcting flaws - shows considerable promise. This paper explores enhancing critique abilities of LLMs, noting that current approaches rely on human annotations or more powerful models, leaving the challenge of improving critique abilities without external supervision unresolved. We introduce SCRIT (Self-evolving CRITic), a framework that trains LLMs with self-generated data to evolve their critique abilities. To address the low quality of naively generated data, we propose a contrastive-critic approach that uses reference solutions during data synthesis to enhance the model's understanding of key concepts, and incorporates a self-validation scheme to ensure data quality. The final trained model operates without any reference solutions at inference time. Implemented with Qwen2.5-72B-Instruct, a leading LLM, SCRIT demonstrates consistent improvements across a wide range of benchmarks spanning both mathematical and scientific reasoning: achieving a 10.0\% relative gain in critique-correction accuracy and a 19.0\% relative improvement in error identification F1-score. Our analysis reveals that SCRIT's performance scales positively with data and model size and enables continuous improvement through multi-round iterations.
Related papers
- DeepCritic: Deliberate Critique with Large Language Models [77.5516314477878]
We focus on studying and enhancing the math critique ability of Large Language Models (LLMs)
Our developed critique model built on Qwen2.5-7B-Instruct significantly outperforms existing LLM critics on various error identification benchmarks.
arXiv Detail & Related papers (2025-05-01T17:03:17Z) - RealCritic: Towards Effectiveness-Driven Evaluation of Language Model Critiques [59.861013614500024]
We introduce a new benchmark designed to assess the critique capabilities of Large Language Models (LLMs)
Unlike existing benchmarks, which typically function in an open-loop fashion, our approach employs a closed-loop methodology that evaluates the quality of corrections generated from critiques.
arXiv Detail & Related papers (2025-01-24T13:48:10Z) - VISCO: Benchmarking Fine-Grained Critique and Correction Towards Self-Improvement in Visual Reasoning [112.35483894933904]
We propose VISCO, the first benchmark to extensively analyze the fine-grained critique and correction capabilities of LVLMs.<n>VISCO features dense and fine-grained critique, requiring LVLMs to evaluate the correctness of each step in the chain-of-thought.<n>LookBack significantly improves critique and correction performance by up to 13.5%.
arXiv Detail & Related papers (2024-12-03T05:04:49Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - Training Language Models to Critique With Multi-agent Feedback [102.42751835338233]
MultiCritique pipeline improves critique ability of LLMs by utilizing multi-agent feedback.
pipeline aggregates high-quality critiques from multiple agents instead of a single model.
Our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models.
arXiv Detail & Related papers (2024-10-20T04:57:45Z) - Critic-CoT: Boosting the reasoning abilities of large language model via Chain-of-thoughts Critic [48.94340387130627]
Critic-CoT is a framework that pushes LLMs toward System-2-like critic capability.
CoT reasoning paradigm and the automatic construction of distant-supervision data without human annotation.
Experiments on GSM8K and MATH demonstrate that our enhanced model significantly boosts task-solving performance.
arXiv Detail & Related papers (2024-08-29T08:02:09Z) - CriticBench: Benchmarking LLMs for Critique-Correct Reasoning [26.45110574463893]
CriticBench is a benchmark designed to assess Large Language Models' abilities to critique and rectify their reasoning.
We evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning.
arXiv Detail & Related papers (2024-02-22T18:59:02Z) - CriticEval: Evaluating Large Language Model as Critic [110.29766259843453]
CriticEval is a novel benchmark designed to comprehensively and reliably evaluate critique ability of Large Language Models.
To ensure the comprehensiveness, CriticEval evaluates critique ability from four dimensions across nine diverse task scenarios.
To ensure the reliability, a large number of critiques are annotated to serve as references.
arXiv Detail & Related papers (2024-02-21T12:38:59Z) - Towards Reliable and Fluent Large Language Models: Incorporating
Feedback Learning Loops in QA Systems [10.58737969057445]
We build a dataset to train a critic model capable of evaluating the citation, correctness, and fluency of responses generated by large language models.
We propose an automated feedback mechanism that leverages the critic model to offer real-time feedback on heterogeneous aspects of generated text.
Experimental results demonstrate the efficacy of our approach, including a 4% precision increase in citation and an approximately 8% enhancement in the MAUVE metric for fluency.
arXiv Detail & Related papers (2023-09-08T09:39:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.