PRvL: Quantifying the Capabilities and Risks of Large Language Models for PII Redaction
- URL: http://arxiv.org/abs/2508.05545v1
- Date: Thu, 07 Aug 2025 16:22:49 GMT
- Title: PRvL: Quantifying the Capabilities and Risks of Large Language Models for PII Redaction
- Authors: Leon Garza, Anantaa Kotal, Aritran Piplai, Lavanya Elluri, Prajit Das, Aman Chadha,
- Abstract summary: Redaction of Personally Identifiable Information (PII) from unstructured text is critical for ensuring data privacy in regulated domains.<n>Recent advances in Large Language Models (LLMs) offer a promising alternative.<n>We present a comprehensive analysis of LLMs as privacy-preserving PII Redaction systems.<n>We release PRvL, an open-source suite of fine-tuned models, and evaluation tools for general-purpose PII Redaction.
- Score: 0.7421845364041001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Redacting Personally Identifiable Information (PII) from unstructured text is critical for ensuring data privacy in regulated domains. While earlier approaches have relied on rule-based systems and domain-specific Named Entity Recognition (NER) models, these methods fail to generalize across formats and contexts. Recent advances in Large Language Models (LLMs) offer a promising alternative, yet the effect of architectural and training choices on redaction performance remains underexplored. LLMs have demonstrated strong performance in tasks that require contextual language understanding, including the redaction of PII in free-form text. Prior work suggests that with appropriate adaptation, LLMs can become effective contextual privacy learners. However, the consequences of architectural and training choices for PII Redaction remain underexplored. In this work, we present a comprehensive analysis of LLMs as privacy-preserving PII Redaction systems. We evaluate a range of LLM architectures and training strategies for their effectiveness in PII Redaction. Our analysis measures redaction performance, semantic preservation, and PII leakage, and compares these outcomes against latency and computational cost. The results provide practical guidance for configuring LLM-based redactors that are accurate, efficient, and privacy-aware. To support reproducibility and real-world deployment, we release PRvL, an open-source suite of fine-tuned models, and evaluation tools for general-purpose PII Redaction. PRvL is built entirely on open-source LLMs and supports multiple inference settings for flexibility and compliance. It is designed to be easily customized for different domains and fully operable within secure, self-managed environments. This enables data owners to perform redactions without relying on third-party services or exposing sensitive content beyond their own infrastructure.
Related papers
- Large Language Models for History, Philosophy, and Sociology of Science: Interpretive Uses, Methodological Challenges, and Critical Perspectives [0.0]
This paper explores the use of large language models (LLMs) as research tools in the history, philosophy, and sociology of science (HPSS)<n>LLMs are remarkably effective at processing unstructured text and inferring meaning from context.<n>This raises both opportunities and challenges for HPSS, which emphasizes interpretive methodologies and understands meaning as context-dependent, ambiguous, and historically situated.
arXiv Detail & Related papers (2025-06-13T21:44:13Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.<n>This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.<n>Existing evaluations tend to rely solely on a final success rate.<n>We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - Privacy Policy Analysis through Prompt Engineering for LLMs [3.059256166047627]
PAPEL (Privacy Policy Analysis through Prompt Engineering for LLMs) is a framework harnessing the power of Large Language Models (LLMs) to automate the analysis of privacy policies.
It aims to streamline the extraction, annotation, and summarization of information from these policies, enhancing their accessibility and comprehensibility without requiring additional model training.
We demonstrate the effectiveness of PAPEL with two applications: (i) annotation and (ii) contradiction analysis.
arXiv Detail & Related papers (2024-09-23T10:23:31Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
Large language models (LLMs) have achieved remarkable performance in language understanding and generation tasks.
This paper thoroughly examines the usefulness and readiness of LLMs for business processes.
arXiv Detail & Related papers (2024-06-09T02:36:00Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.