High-Order Error Bounds for Markovian LSA with Richardson-Romberg Extrapolation
- URL: http://arxiv.org/abs/2508.05570v1
- Date: Thu, 07 Aug 2025 17:02:11 GMT
- Title: High-Order Error Bounds for Markovian LSA with Richardson-Romberg Extrapolation
- Authors: Ilya Levin, Alexey Naumov, Sergey Samsonov,
- Abstract summary: We study the bias and high-order error bounds of the Linear Approximation algorithm with Polyak-Ruppert averaging under Markovian noise.<n>We propose a novel decomposition of the bias via a linearization technique.
- Score: 5.214413413248683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study the bias and high-order error bounds of the Linear Stochastic Approximation (LSA) algorithm with Polyak-Ruppert (PR) averaging under Markovian noise. We focus on the version of the algorithm with constant step size $\alpha$ and propose a novel decomposition of the bias via a linearization technique. We analyze the structure of the bias and show that the leading-order term is linear in $\alpha$ and cannot be eliminated by PR averaging. To address this, we apply the Richardson-Romberg (RR) extrapolation procedure, which effectively cancels the leading bias term. We derive high-order moment bounds for the RR iterates and show that the leading error term aligns with the asymptotically optimal covariance matrix of the vanilla averaged LSA iterates.
Related papers
- Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson-Romberg Extrapolation [22.652143194356864]
We address the problem of solving strongly convex and smooth problems using gradient descent (SGD) with a constant step size.<n>We provide an expansion of the mean-squared error of the resulting estimator with respect to the number of iterations $n$.<n>Our analysis relies on the properties of the SGDs viewed as a time-homogeneous Markov chain.
arXiv Detail & Related papers (2024-10-07T15:02:48Z) - Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning [15.041074872715752]
We prove the non-asymptotic validity of the confidence intervals for parameter estimation with LSA based on multiplier bootstraps.<n>We illustrate our findings in the setting of temporal difference learning with linear function approximation.
arXiv Detail & Related papers (2024-05-26T17:43:30Z) - Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability [17.771354881467435]
We show that a simple algorithm with a universal and instance-independent step size is sufficient to obtain near-optimal variance and bias terms.
Our proof technique is based on refined error bounds for linear approximation together with the novel stability result for the product of random matrices.
arXiv Detail & Related papers (2023-10-22T12:37:25Z) - Approximating a RUM from Distributions on k-Slates [88.32814292632675]
We find a generalization-time algorithm that finds the RUM that best approximates the given distribution on average.
Our theoretical result can also be made practical: we obtain a that is effective and scales to real-world datasets.
arXiv Detail & Related papers (2023-05-22T17:43:34Z) - Bias and Extrapolation in Markovian Linear Stochastic Approximation with
Constant Stepsizes [9.689344942945652]
We consider Linear Approximation (LSA) with a constant stepsize and Markovian data.
We show that the bias vector of this limit admits an infinite series expansion with respect to the stepsize.
We show that the bias can be reduced using Richardson-Romberg extrapolation with $mge 2$ stepsizes.
arXiv Detail & Related papers (2022-10-03T14:11:03Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.<n>We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Optimal Online Generalized Linear Regression with Stochastic Noise and
Its Application to Heteroscedastic Bandits [88.6139446295537]
We study the problem of online generalized linear regression in the setting of a generalized linear model with possibly unbounded additive noise.
We provide a sharp analysis of the classical follow-the-regularized-leader (FTRL) algorithm to cope with the label noise.
We propose an algorithm based on FTRL to achieve the first variance-aware regret bound.
arXiv Detail & Related papers (2022-02-28T08:25:26Z) - Optimal and instance-dependent guarantees for Markovian linear stochastic approximation [47.912511426974376]
We show a non-asymptotic bound of the order $t_mathrmmix tfracdn$ on the squared error of the last iterate of a standard scheme.
We derive corollaries of these results for policy evaluation with Markov noise.
arXiv Detail & Related papers (2021-12-23T18:47:50Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - A spectral algorithm for robust regression with subgaussian rates [0.0]
We study a new linear up to quadratic time algorithm for linear regression in the absence of strong assumptions on the underlying distributions of samples.
The goal is to design a procedure which attains the optimal sub-gaussian error bound even though the data have only finite moments.
arXiv Detail & Related papers (2020-07-12T19:33:50Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.