Secure Quantum Key Distribution via Entangled Quantum Walkers
- URL: http://arxiv.org/abs/2508.05593v1
- Date: Thu, 07 Aug 2025 17:34:15 GMT
- Title: Secure Quantum Key Distribution via Entangled Quantum Walkers
- Authors: Chia-Tso Lai,
- Abstract summary: Quantum Key Distribution (QKD) is an emerging cryptographic method designed for secure key sharing.<n>We propose a novel QKD protocol based on two entangled quantum walkers.<n>Our protocol exploits the unique correlations between the walkers at extremal positions of the walk to establish secret keys shared exclusively by the two parties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Key Distribution (QKD) is an emerging cryptographic method designed for secure key sharing. Its security is theoretically guaranteed by fundamental principles of quantum mechanics, making it a leading candidate for future communication protocols. Quantum Random Walks (QRWs), on the other hand, are quantum processes that exhibit intriguing phenomena such as interference and superposition, enabling the generation of decentralized and asymmetric probability distributions. Inspired by both fields of study, we propose a novel QKD protocol based on two entangled quantum walkers. Our protocol exploits the unique correlations between the walkers at extremal positions of the walk to establish secret keys shared exclusively by the two parties. The security of the protocol is augmented by analyzing the joint probability distributions of the walkers' measured positions and their associated coin states.
Related papers
- Breaking Quantum Key Distributions under Quantum Switch-Based Attack [0.0]
We introduce a new attack scenario where an eavesdropper, Eve, exploits a quantum switch using the indefinite causal order to intercept and manipulate quantum communication channel.<n>Our results highlight a previously overlooked vulnerability, emphasizing the need for countermeasures against quantum-controlled adversarial strategies.
arXiv Detail & Related papers (2025-02-10T18:56:47Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Quantum-Secured Data Centre Interconnect in a field environment [38.4938584033229]
Quantum key distribution (QKD) is an established quantum technology at a high readiness level.
In this article, we present the successful implementation of a QKD field trial within a commercial data centre environment.
The achieved average secret key rate of 2.392 kbps and an average quantum bit error rate of less than 2% demonstrate the commercial feasibility of QKD in real-world scenarios.
arXiv Detail & Related papers (2024-10-14T08:05:25Z) - Twin-field-based multi-party quantum key agreement [0.0]
We study a method to extend the twin-field key distribution protocol to a scheme for multi-party quantum key agreement.<n>We study our protocol's security using a minimum error discrimination analysis and derive the key rate based on the entanglement-based source-replacement scheme.
arXiv Detail & Related papers (2024-09-06T11:51:10Z) - Unconditionally secure key distribution without quantum channel [0.76146285961466]
Currently, the quantum scheme stands as the only known method for achieving unconditionally secure key distribution.
We propose another key distribution scheme with unconditional security, named probability key distribution, that promises users between any two distances to generate a fixed and high secret key rate.
Non-local entangled states can be generated, identified and measured in the equivalent virtual protocol and can be used to extract secret keys.
arXiv Detail & Related papers (2024-08-24T15:13:14Z) - Dynamic Quantum Group Key Agreement via Tree Key Graphs [36.47236890715043]
We propose two dynamic Quantum Group Key Agreement protocols for a join or leave request in group communications.
The number of qubits required per join or leave only increases logarithmically with the group size.
arXiv Detail & Related papers (2023-12-07T07:45:59Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.<n>We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Security of a High Dimensional Two-Way Quantum Key Distribution Protocol [1.827510863075184]
Two-way quantum key distribution protocols utilize bi-directional quantum communication to establish a shared secret key.
We investigate a high-dimensional variant of the Ping Pong protocol and perform an information theoretic security analysis in the finite-key setting.
arXiv Detail & Related papers (2022-03-06T15:36:54Z) - Noiseless attack and counterfactual security of quantum key distribution [0.0]
We show that the efficiency of counterfactual QKD protocols can be enhanced by including non-counterfactual bits.
We show how this problem can be resolved in a simple way, whereby the non-counterfactual key bits are indicated to be secure.
This method of enhancing the key rate is shown to be applicable to various existing quantum counterfactual key distribution protocols.
arXiv Detail & Related papers (2020-12-09T16:48:43Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.