TrajEvo: Trajectory Prediction Heuristics Design via LLM-driven Evolution
- URL: http://arxiv.org/abs/2508.05616v1
- Date: Thu, 07 Aug 2025 17:55:10 GMT
- Title: TrajEvo: Trajectory Prediction Heuristics Design via LLM-driven Evolution
- Authors: Zhikai Zhao, Chuanbo Hua, Federico Berto, Kanghoon Lee, Zihan Ma, Jiachen Li, Jinkyoo Park,
- Abstract summary: Tray prediction is a critical task in modeling human behavior, especially in safety-critical domains such as social robotics and autonomous vehicle navigation.<n>In this paper, we introduce TrajEvo, a framework that leverages Large Language Models (LLMs) to automatically design trajectory prediction generals.
- Score: 19.607695535560566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction is a critical task in modeling human behavior, especially in safety-critical domains such as social robotics and autonomous vehicle navigation. Traditional heuristics based on handcrafted rules often lack accuracy and generalizability. Although deep learning approaches offer improved performance, they typically suffer from high computational cost, limited explainability, and, importantly, poor generalization to out-of-distribution (OOD) scenarios. In this paper, we introduce TrajEvo, a framework that leverages Large Language Models (LLMs) to automatically design trajectory prediction heuristics. TrajEvo employs an evolutionary algorithm to generate and refine prediction heuristics from past trajectory data. We propose two key innovations: Cross-Generation Elite Sampling to encourage population diversity, and a Statistics Feedback Loop that enables the LLM to analyze and improve alternative predictions. Our evaluations demonstrate that TrajEvo outperforms existing heuristic methods across multiple real-world datasets, and notably surpasses both heuristic and deep learning methods in generalizing to an unseen OOD real-world dataset. TrajEvo marks a promising step toward the automated design of fast, explainable, and generalizable trajectory prediction heuristics. We release our source code to facilitate future research at https://github.com/ai4co/trajevo.
Related papers
- Generative Active Learning for Long-tail Trajectory Prediction via Controllable Diffusion Model [33.08750291010022]
We introduce Generative Active Learning for Trajectory prediction (GALTraj)<n>GALTraj is the first method to successfully deploy generative active learning into trajectory prediction.<n>Unlike prior simulation methods focused solely on scenario diversity, GALTraj is the first to show how simulator-driven augmentation benefits long-tail learning in trajectory prediction.
arXiv Detail & Related papers (2025-07-30T12:36:05Z) - TrajFlow: Multi-modal Motion Prediction via Flow Matching [29.274577509291973]
We introduce TrajFlow, a novel flow matching-based motion prediction framework.<n>TrajFlow predicts multiple plausible future trajectories in a single pass, significantly reducing computational overhead.<n>It achieves state-of-the-art performance across various key metrics, underscoring its effectiveness for safety-critical autonomous driving applications.
arXiv Detail & Related papers (2025-06-10T08:08:31Z) - TrajEvo: Designing Trajectory Prediction Heuristics via LLM-driven Evolution [19.607695535560566]
Trajectory prediction is a crucial task in modeling human behavior.<n>In this paper, we introduce TrajEvo, a framework that leverages Large Language Models (LLMs) to automatically design trajectory predictions.
arXiv Detail & Related papers (2025-05-07T14:51:43Z) - Deep learning framework for action prediction reveals multi-timescale locomotor control [41.985053522482545]
We develop a deep learning-based framework for action prediction.<n>We find that neural network architectures with flexible input history- timescales, like GRU and Transformer, perform best overall.
arXiv Detail & Related papers (2025-03-20T16:57:15Z) - Unified Human Localization and Trajectory Prediction with Monocular Vision [64.19384064365431]
MonoTransmotion is a Transformer-based framework that uses only a monocular camera to jointly solve localization and prediction tasks.<n>We show that by jointly training both tasks with our unified framework, our method is more robust in real-world scenarios made of noisy inputs.
arXiv Detail & Related papers (2025-03-05T14:18:39Z) - Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - Scene-Aware Explainable Multimodal Trajectory Prediction [15.58042746234974]
We introduce the Explainable Conditional Diffusion-based Multimodal Trajectory Prediction (DMTP) model.<n>Our model integrates a modified conditional diffusion approach to capture multimodal trajectory patterns and employs a revised Shapley Value model to assess the significance of global and scenario-specific features.<n> Experiments demonstrate that our explainable model excels in identifying critical inputs and significantly outperforms baseline models in accuracy.
arXiv Detail & Related papers (2024-10-22T08:17:33Z) - Adaptive Prediction Ensemble: Improving Out-of-Distribution Generalization of Motion Forecasting [15.916325272109454]
We propose a novel framework, Adaptive Prediction Ensemble (APE), which integrates deep learning and rule-based prediction experts.<n>A learned routing function, trained concurrently with the deep learning model, dynamically selects the most reliable prediction based on the input scenario.<n>We show that our method outperforms individual prediction models and other variants, particularly in long-horizon prediction and scenarios with a high proportion of OOD data.
arXiv Detail & Related papers (2024-07-12T17:57:00Z) - Certified Human Trajectory Prediction [66.1736456453465]
We propose a certification approach tailored for trajectory prediction that provides guaranteed robustness.<n>To mitigate the inherent performance drop through certification, we propose a diffusion-based trajectory denoiser and integrate it into our method.<n>We demonstrate the accuracy and robustness of the certified predictors and highlight their advantages over the non-certified ones.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.