論文の概要: Adaptive Backtracking for Privacy Protection in Large Language Models
- arxiv url: http://arxiv.org/abs/2508.06087v1
- Date: Fri, 08 Aug 2025 07:29:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-11 20:39:06.122071
- Title: Adaptive Backtracking for Privacy Protection in Large Language Models
- Title(参考訳): 大規模言語モデルにおけるプライバシ保護のための適応的バックトラッキング
- Authors: Zhihao Yao, Yuxuan Gu, Xiachong Feng, Weitao Ma, Bo Li, Xiaocheng Feng,
- Abstract要約: 本稿では,企業指向のプライバシに関する新たな目的について紹介する。
データ・サニタイズなどの既存の手法では、モデルの性能が著しく低下する。
隠れ状態モデルを活用するトレーニングフリーのメカニズムであるABackを提案する。
- 参考スコア(独自算出の注目度): 22.340767807000212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The preservation of privacy has emerged as a critical topic in the era of artificial intelligence. However, current work focuses on user-oriented privacy, overlooking severe enterprise data leakage risks exacerbated by the Retrieval-Augmented Generation paradigm. To address this gap, our paper introduces a novel objective: enterprise-oriented privacy concerns. Achieving this objective requires overcoming two fundamental challenges: existing methods such as data sanitization severely degrade model performance, and the field lacks public datasets for evaluation. We address these challenges with several solutions. (1) To prevent performance degradation, we propose ABack, a training-free mechanism that leverages a Hidden State Model to pinpoint the origin of a leakage intention and rewrite the output safely. (2) To solve the lack of datasets, we construct PriGenQA, a new benchmark for enterprise privacy scenarios in healthcare and finance. To ensure a rigorous evaluation, we move beyond simple static attacks by developing a powerful adaptive attacker with Group Relative Policy Optimization. Experiments show that against this superior adversary, ABack improves the overall privacy utility score by up to 15\% over strong baselines, avoiding the performance trade-offs of prior methods.
- Abstract(参考訳): プライバシーの保存は、人工知能の時代において重要なトピックとして現れてきた。
しかし、現在の研究は、Retrieval-Augmented Generationパラダイムによって悪化する厳しいエンタープライズデータ漏洩リスクを見越して、ユーザ指向のプライバシに焦点を当てている。
このギャップに対処するため,本稿では,企業指向のプライバシに関する新たな目的について紹介する。
この目的を達成するには、2つの根本的な課題を克服する必要がある。データサニタイズのような既存のメソッドは、モデルのパフォーマンスを著しく低下させ、フィールドは評価のための公開データセットを欠いている。
我々はこれらの課題にいくつかの解決策で対処する。
1) 性能劣化を防止するため, 隠れ状態モデルを利用して漏洩意図の起点を特定し, 出力を安全に書き直す訓練自由機構であるABackを提案する。
2) データセットの欠如を解決するため,医療・金融における企業プライバシシナリオの新たなベンチマークであるPriGenQAを構築した。
厳密な評価を確保するため、グループ相対ポリシー最適化を用いた強力な適応攻撃を開発することで、単純な静的攻撃を克服する。
実験によると、この優れた敵に対して、ABackは、強力なベースラインよりも、全体のプライバシーユーティリティスコアを最大15倍改善し、以前のメソッドのパフォーマンス上のトレードオフを避けている。
関連論文リスト
- Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
我々はFedE4RAG(Federated Retrieval-Augmented Generation)と呼ばれる新しいフレームワークを提案する。
FedE4RAGはクライアント側RAG検索モデルの協調トレーニングを容易にする。
モデルパラメータの保護にフェデレート学習の準同型暗号化を適用する。
論文 参考訳(メタデータ) (2025-04-27T04:26:02Z) - How Breakable Is Privacy: Probing and Resisting Model Inversion Attacks in Collaborative Inference [13.453033795109155]
協調推論は、中間機能をクラウドモデルに伝達することでエッジデバイスの計算効率を向上させる。
モデル逆攻撃(MIA)の難しさを評価するための確立された基準はない。
本稿では、CIにおけるMIAの難易度を評価するための最初の理論的基準を提案し、相互情報、エントロピー、有効情報量などを重要な要因として同定する。
論文 参考訳(メタデータ) (2025-01-01T13:00:01Z) - Fed-AugMix: Balancing Privacy and Utility via Data Augmentation [15.325493418326117]
緩やかな漏洩攻撃は、連合学習のプライバシー保証に重大な脅威をもたらす。
本稿では,プライバシ・ユーティリティのトレードオフを実現するために,新たなデータ拡張ベースのフレームワークを提案する。
我々のフレームワークは、AugMixアルゴリズムをクライアントレベルで組み込んで、制御可能な重大度でデータ拡張を可能にする。
論文 参考訳(メタデータ) (2024-12-18T13:05:55Z) - New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Privacy-Preserving Dynamic Assortment Selection [4.399892832075127]
本稿では,マルチノミアルロジット(MNL)バンドレートモデルを用いて,プライバシ保護のための動的アソシエーション選択のための新しいフレームワークを提案する。
弊社のアプローチでは、ノイズをユーザユーティリティ推定に統合し、探索とエクスプロイトのバランスを保ちつつ、堅牢なプライバシー保護を確保している。
論文 参考訳(メタデータ) (2024-10-29T19:28:01Z) - Private Optimal Inventory Policy Learning for Feature-based Newsvendor with Unknown Demand [13.594765018457904]
本稿では, f-differential privacy framework内で, プライバシ保護に最適な在庫ポリシーを推定するための新しいアプローチを提案する。
最適在庫推定のための畳み込み平滑化に基づくクリップ付き雑音勾配降下アルゴリズムを開発した。
提案手法は,コストを極端に増大させることなく,望ましいプライバシー保護を実現することができることを示す。
論文 参考訳(メタデータ) (2024-04-23T19:15:43Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Visual Privacy Auditing with Diffusion Models [47.0700328585184]
拡散モデル (DM) に基づく再構成攻撃を導入し, 現実画像への逆アクセスを前提としている。
その結果,(1) 実世界の過去のデータが再建の成功に大きく影響していること,(2) 現在の再建境界は, 過去のデータによるリスクをうまくモデル化せず, DMは, プライバシー漏洩を可視化するための監査ツールとして機能することがわかった。
論文 参考訳(メタデータ) (2024-03-12T12:18:55Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。