論文の概要: Membership Inference Attack with Partial Features
- arxiv url: http://arxiv.org/abs/2508.06244v1
- Date: Fri, 08 Aug 2025 11:56:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-11 20:39:06.217082
- Title: Membership Inference Attack with Partial Features
- Title(参考訳): 部分的特徴を持つメンバーシップ推論攻撃
- Authors: Xurun Wang, Guangrui Liu, Xinjie Li, Haoyu He, Lin Yao, Weizhe Zhang,
- Abstract要約: 本研究では,各サンプルの部分的な特徴のみを相手が観察する推論シナリオについて検討する。
MRAD (Memory-Guided Reconstruction and Anomaly Detection) は2段階攻撃フレームワークである。
MRADはさまざまなデータセットで有効であり、市販の異常検出技術との互換性を維持している。
- 参考スコア(独自算出の注目度): 14.336020797572361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models have been shown to be susceptible to membership inference attack, which can be used to determine whether a given sample appears in the training data. Existing membership inference methods commonly assume that the adversary has full access to the features of the target sample. This assumption, however, does not hold in many real-world scenarios where only partial features information is available, thereby limiting the applicability of these methods. In this work, we study an inference scenario where the adversary observes only partial features of each sample and aims to infer whether this observed subset was present in the training set of the target model. We define this problem as Partial Feature Membership Inference (PFMI). To address this problem, we propose MRAD (Memory-guided Reconstruction and Anomaly Detection), a two-stage attack framework. In the first stage, MRAD optimizes the unknown feature values to minimize the loss of the sample. In the second stage, it measures the deviation between the reconstructed sample and the training distribution using anomaly detection. Empirical results demonstrate that MRAD is effective across a range of datasets, and maintains compatibility with various off-the-shelf anomaly detection techniques. For example, on STL-10, our attack achieves an AUC of around 0.6 even with 40% of the missing features.
- Abstract(参考訳): 機械学習モデルは、トレーニングデータに与えられたサンプルが現れるかどうかを判断するために使用できる、メンバシップ推論攻撃の影響を受けやすいことが示されている。
既存のメンバーシップ推論手法は、通常、相手が対象のサンプルの特徴に完全にアクセスできると仮定する。
しかし、この仮定は、部分的な特徴情報しか利用できない現実のシナリオの多くに当てはまらないため、これらの手法の適用性が制限される。
本研究では,各サンプルの部分的特徴のみを敵が観察する推論シナリオについて検討し,対象モデルのトレーニングセットにその部分集合が存在するかどうかを推測する。
この問題をPFMI(Partial Feature Membership Inference)と定義する。
この問題に対処するために,2段階攻撃フレームワークであるMRAD(Memory-Guided Reconstruction and Anomaly Detection)を提案する。
第一段階では、MRADは未知の特徴値を最適化し、サンプルの損失を最小限に抑える。
第2段階では、再構成標本とトレーニング分布とのずれを異常検出を用いて測定する。
実験結果によると、MRADはさまざまなデータセットで有効であり、市販の異常検出技術との互換性を維持している。
例えば、STL-10では、欠落した機能の40%であっても、攻撃によって約0.6のAUCが達成されます。
関連論文リスト
- CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
異常検出は、異常の定義の曖昧さ、異常型の多様性、トレーニングデータの不足による複雑な問題である。
識別的基盤モデルと生成的基礎モデルの両方を活用するCLIPfusionを提案する。
本手法は, 異常検出の多面的課題に対処する上で, マルチモーダル・マルチモデル融合の有効性を裏付けるものである。
論文 参考訳(メタデータ) (2025-06-13T13:30:15Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Exploiting the Data Gap: Utilizing Non-ignorable Missingness to Manipulate Model Learning [13.797822374912773]
敵対的ミススティングネス(AM)攻撃は、悪意ある無知の欠陥メカニズムによって動機づけられる。
本研究は,AM攻撃の文脈における連帯学習に焦点を当てる。
両レベルの最適化として,対向的欠落メカニズムの学習を定式化する。
論文 参考訳(メタデータ) (2024-09-06T17:10:28Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration [32.15773300068426]
メンバーシップ推論攻撃は、対象のデータレコードがモデルトレーニングに使用されたかどうかを推測することを目的としている。
自己校正確率変動(SPV-MIA)に基づくメンバーシップ推論攻撃を提案する。
論文 参考訳(メタデータ) (2023-11-10T13:55:05Z) - Membership Inference Attacks by Exploiting Loss Trajectory [19.900473800648243]
そこで本研究では,対象モデルのトレーニングプロセス全体から,メンバシップ情報を利用する新たな攻撃手法であるシステムを提案する。
我々の攻撃は、既存の方法よりも0.1%低い偽陽性率で、少なくとも6$times$高い真陽性率を達成する。
論文 参考訳(メタデータ) (2022-08-31T16:02:26Z) - MIAShield: Defending Membership Inference Attacks via Preemptive
Exclusion of Members [9.301268830193072]
メンバーシップ推論攻撃では、相手はモデルの予測を観察し、サンプルがモデルのトレーニングデータの一部であるかどうかを判断する。
そこで我々は,MIAShieldを提案する。MIAShieldは,メンバーの存在を隠蔽する代わりに,メンバーサンプルのプリエンプティブ排除に基づく新しいMIAディフェンスである。
我々は,MIAShieldが多岐にわたるMIAの会員推定を効果的に緩和し,最先端の防衛技術と比較してはるかに優れたプライバシー利用トレードオフを実現し,適応的敵に対する耐性を保っていることを示す。
論文 参考訳(メタデータ) (2022-03-02T07:53:21Z) - Simple Adaptive Projection with Pretrained Features for Anomaly
Detection [0.0]
本稿では,単純な線形変換と自己注意を含む新しい適応フレームワークを提案する。
事前訓練した特徴を持つ簡易適応投影法(SAP2)により,新しい異常検出基準が得られた。
論文 参考訳(メタデータ) (2021-12-05T15:29:59Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
拡張埋め込み(CPLAE)モデルを用いた新しいコントラスト型プロトタイプ学習を提案する。
クラスプロトタイプをアンカーとして、CPLは、同じクラスのクエリサンプルを、異なるクラスのサンプルを、さらに遠くに引き出すことを目的としている。
いくつかのベンチマークによる大規模な実験により,提案したCPLAEが新たな最先端を実現することが示された。
論文 参考訳(メタデータ) (2021-01-23T13:22:44Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。