論文の概要: Benchmarking Deep Learning-Based Object Detection Models on Feature Deficient Astrophotography Imagery Dataset
- arxiv url: http://arxiv.org/abs/2508.06537v1
- Date: Mon, 04 Aug 2025 10:03:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.419173
- Title: Benchmarking Deep Learning-Based Object Detection Models on Feature Deficient Astrophotography Imagery Dataset
- Title(参考訳): 特徴不十分な天体写真画像データセットを用いた深層学習に基づく物体検出モデルのベンチマーク
- Authors: Shantanusinh Parmar,
- Abstract要約: スマートフォンベースの天体写真データセットであるMobilTelescoは、薄暗い夜景の画像を提供することで、この問題に対処する。
いくつかの検出モデルをベンチマークし、機能不足の条件下での課題を強調します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Object detection models are typically trained on datasets like ImageNet, COCO, and PASCAL VOC, which focus on everyday objects. However, these lack signal sparsity found in non-commercial domains. MobilTelesco, a smartphone-based astrophotography dataset, addresses this by providing sparse night-sky images. We benchmark several detection models on it, highlighting challenges under feature-deficient conditions.
- Abstract(参考訳): オブジェクト検出モデルは一般的に、日々のオブジェクトに焦点を当てたImageNet、COCO、PASCAL VOCなどのデータセットでトレーニングされる。
しかし、これらは非商業領域で見られる信号の空間性に欠ける。
スマートフォンベースの天体写真データセットであるMobilTelescoは、薄暗い夜景の画像を提供することで、この問題に対処する。
いくつかの検出モデルをベンチマークし、機能不足の条件下での課題を強調します。
関連論文リスト
- Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
本研究では,新しいデータセット,ベンチマーク,動的粗大な学習手法を提案する。
提案するデータセットであるAI-TOD-Rは、すべてのオブジェクト指向オブジェクト検出データセットの中で最小のオブジェクトサイズを特徴としている。
完全教師付きおよびラベル効率の両アプローチを含む,幅広い検出パラダイムにまたがるベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-16T09:14:32Z) - Analysis of Object Detection Models for Tiny Object in Satellite Imagery: A Dataset-Centric Approach [0.0]
本稿では,衛星画像におけるSOD(Small-Object-Detection)の領域について述べる。
従来のオブジェクト検出モデルは、コンテキスト情報やクラス不均衡が限られたため、小さなオブジェクトを検出するのに困難に直面している。
本研究の目的は,衛星画像における微小物体検出に関する貴重な知見を,最先端のモデルを用いて実証的に評価することである。
論文 参考訳(メタデータ) (2024-12-12T07:06:22Z) - FlightScope: An Experimental Comparative Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
本稿では,衛星画像中の航空機を識別するタスク用にカスタマイズされた,高度な物体検出アルゴリズム群を批判的に評価し,比較する。
この研究は、YOLOバージョン5と8、より高速なRCNN、CenterNet、RetinaNet、RTMDet、DETRを含む一連の方法論を含む。
YOLOv5は空中物体検出のための堅牢なソリューションとして登場し、平均的精度、リコール、ユニオンのスコアに対するインターセクションによってその重要性を裏付けている。
論文 参考訳(メタデータ) (2024-04-03T17:24:27Z) - DiffusionSat: A Generative Foundation Model for Satellite Imagery [63.2807119794691]
現在、DiffusionSatは、現在利用可能な大規模な高解像度リモートセンシングデータセットのコレクションに基づいてトレーニングされている、最大の生成基盤モデルである。
提案手法は, リアルタイムなサンプルを作成し, 時間生成, マルチスペクトル入力の超解像, インペイントなどの複数の生成課題を解くのに利用できる。
論文 参考訳(メタデータ) (2023-12-06T16:53:17Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - On the Robustness of Object Detection Models on Aerial Images [38.91734128770737]
DOTA-v1.0に基づく新しいベンチマークを2つ導入する。
第1のベンチマークは、19の一般的な汚職を含むが、第2のベンチマークは、クラウド崩壊状態に焦点を当てている。
回転不変モデリングと強化されたバックボーンアーキテクチャはモデルの堅牢性を向上させることができる。
論文 参考訳(メタデータ) (2023-08-29T15:16:51Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
本稿では,ノードとエッジがオブジェクトによって表現される構造化グラフを用いた,新しい不確実性を考慮したオブジェクト検出フレームワークを提案する。
我々は我々のモデルをオブジェクトDETection(UAGDet)のための不確実性対応グラフネットワークと呼ぶ。
論文 参考訳(メタデータ) (2022-08-23T07:29:03Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。