論文の概要: Federated Online Learning for Heterogeneous Multisource Streaming Data
- arxiv url: http://arxiv.org/abs/2508.06652v1
- Date: Fri, 08 Aug 2025 19:08:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.492571
- Title: Federated Online Learning for Heterogeneous Multisource Streaming Data
- Title(参考訳): 不均一なマルチソースストリーミングデータのためのフェデレーションオンライン学習
- Authors: Jingmao Li, Yuanxing Chen, Shuangge Ma, Kuangnan Fang,
- Abstract要約: フェデレートラーニングは、プライバシの懸念の下で分散マルチソースデータ分析に不可欠なパラダイムとして登場した。
本稿では,分散マルチソースストリーミングデータ解析のためのFOL手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has emerged as an essential paradigm for distributed multi-source data analysis under privacy concerns. Most existing federated learning methods focus on the ``static" datasets. However, in many real-world applications, data arrive continuously over time, forming streaming datasets. This introduces additional challenges for data storage and algorithm design, particularly under high-dimensional settings. In this paper, we propose a federated online learning (FOL) method for distributed multi-source streaming data analysis. To account for heterogeneity, a personalized model is constructed for each data source, and a novel ``subgroup" assumption is employed to capture potential similarities, thereby enhancing model performance. We adopt the penalized renewable estimation method and the efficient proximal gradient descent for model training. The proposed method aligns with both federated and online learning frameworks: raw data are not exchanged among sources, ensuring data privacy, and only summary statistics of previous data batches are required for model updates, significantly reducing storage demands. Theoretically, we establish the consistency properties for model estimation, variable selection, and subgroup structure recovery, demonstrating optimal statistical efficiency. Simulations illustrate the effectiveness of the proposed method. Furthermore, when applied to the financial lending data and the web log data, the proposed method also exhibits advantageous prediction performance. Results of the analysis also provide some practical insights.
- Abstract(参考訳): フェデレートラーニングは、プライバシの懸念の下で分散マルチソースデータ分析に不可欠なパラダイムとして登場した。
本稿では、分散マルチソースストリーミングデータ分析のためのフェデレーションオンライン学習(FOL)手法を提案する。不均一性を考慮して、各データソースに対してパーソナライズされたモデルを構築し、新しい「サブグループ」仮定を用いて、潜在的な類似性を捕捉し、モデル性能を向上させる。
我々は, モデルトレーニングにおいて, ペナル化再生推定法と効率的な近位勾配降下法を採用する。
提案手法は,データソース間の生データは交換されず,データプライバシを保証し,データバッチの要約統計のみをモデル更新に必要とし,ストレージ要求を大幅に低減する。
理論的には、モデル推定、変数選択、サブグループ構造回復のための整合性を確立し、最適な統計的効率を示す。
シミュレーションでは,提案手法の有効性が示されている。
さらに,ファイナンス融資データとWebログデータに適用した場合,提案手法は有利な予測性能を示す。
分析の結果は、いくつかの実践的な洞察も与えている。
関連論文リスト
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
大規模言語モデル(LLM)は、強化学習(RL)による微調整時に強い推論能力を示す。
トレーニング対象のモデルの性能に基づいて,効率的な学習を可能にする自己評価学習フレームワークである textbfSPaRFT を提案する。
論文 参考訳(メタデータ) (2025-08-07T03:50:48Z) - Probabilistic Federated Prompt-Tuning with Non-IID and Imbalanced Data [35.47385526394076]
微調整事前学習モデルは、適度なデータで複雑なタスクを解決する機械学習の一般的なアプローチである。
事前訓練されたモデル全体を微調整することは、ローカルデータ分布が多様に歪んだフェデレーションデータシナリオでは効果がない。
提案手法は,フェデレーション学習を分散集合モデリングタスクに変換し,事前学習したモデルを世界規模で微調整するための多様なプロンプトを集約する。
論文 参考訳(メタデータ) (2025-02-27T04:31:34Z) - Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated Learning(FL)は、独立した学習者がデータをプライベートに処理する分散機械学習アプローチである。
現在普及しているデータ分割技術について検討し、その主な欠点を可視化する。
エントロピーと対称性を利用して「最も困難」かつ制御可能なデータ分布を構築する手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T18:39:08Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Quality Not Quantity: On the Interaction between Dataset Design and
Robustness of CLIP [43.7219097444333]
ここでは,CLIPにおける事前学習分布がロバスト性をいかに引き起こすかを調べるために,公開されている6つのデータソースのテストベッドを紹介する。
その結果,事前学習データの性能は分布変化によって大きく異なることがわかった。
複数のソースを組み合わせることで、必ずしもより良いモデルが得られるのではなく、最高の個々のデータソースのロバスト性を希薄にする。
論文 参考訳(メタデータ) (2022-08-10T18:24:23Z) - Deep Learning with Multiple Data Set: A Weighted Goal Programming
Approach [2.7393821783237184]
大規模データ分析は、我々の社会でデータが増大するにつれて、指数的な速度で成長している。
ディープラーニングモデルはたくさんのリソースを必要とし、分散トレーニングが必要です。
本稿では,分散学習のためのマルチ基準アプローチを提案する。
論文 参考訳(メタデータ) (2021-11-27T07:10:25Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。