論文の概要: DiffUS: Differentiable Ultrasound Rendering from Volumetric Imaging
- arxiv url: http://arxiv.org/abs/2508.06768v1
- Date: Sat, 09 Aug 2025 01:04:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.540577
- Title: DiffUS: Differentiable Ultrasound Rendering from Volumetric Imaging
- Title(参考訳): DiffUS:ボリュームイメージングによる超音波レンダリング
- Authors: Noe Bertramo, Gabriel Duguey, Vivek Gopalakrishnan,
- Abstract要約: 術中超音波画像検査は、多数の外科手術中にリアルタイムのガイダンスを提供する。
しかし、その解釈はノイズ、ボリュームアーティファクト、高分解能MRI/CTスキャンとの整合性に複雑である。
本稿では,体積像から実写のBモード像を合成する物理ベースの反射法DiffUSを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intraoperative ultrasound imaging provides real-time guidance during numerous surgical procedures, but its interpretation is complicated by noise, artifacts, and poor alignment with high-resolution preoperative MRI/CT scans. To bridge the gap between reoperative planning and intraoperative guidance, we present DiffUS, a physics-based, differentiable ultrasound renderer that synthesizes realistic B-mode images from volumetric imaging. DiffUS first converts MRI 3D scans into acoustic impedance volumes using a machine learning approach. Next, we simulate ultrasound beam propagation using ray tracing with coupled reflection-transmission equations. DiffUS formulates wave propagation as a sparse linear system that captures multiple internal reflections. Finally, we reconstruct B-mode images via depth-resolved echo extraction across fan-shaped acquisition geometry, incorporating realistic artifacts including speckle noise and depth-dependent degradation. DiffUS is entirely implemented as differentiable tensor operations in PyTorch, enabling gradient-based optimization for downstream applications such as slice-to-volume registration and volumetric reconstruction. Evaluation on the ReMIND dataset demonstrates DiffUS's ability to generate anatomically accurate ultrasound images from brain MRI data.
- Abstract(参考訳): 術中超音波画像検査は多数の外科手術中にリアルタイムのガイダンスを提供するが、その解釈はノイズ、アーティファクト、高分解能MRI/CTスキャンとの整合性により複雑である。
手術計画と術中指導のギャップを埋めるために,実写のBモード画像をボリューム画像から合成する物理ベースで微分可能な超音波レンダラーDiffUSを提案する。
DiffUSはまず、MRI 3Dスキャンを機械学習アプローチを用いて音響インピーダンスボリュームに変換する。
次に、反射-透過方程式を結合したレイトレーシングによる超音波ビーム伝搬のシミュレーションを行う。
DiffUSは、複数の内部反射をキャプチャするスパース線形系として波動伝播を定式化している。
最後に,Bモード画像の深度分解エコー抽出をファン形状の取得形状で再構成し,スペックルノイズや深度依存劣化といった現実的な成果を取り入れた。
DiffUSはPyTorchで微分可能なテンソル演算として完全に実装されており、スライス・ツー・ボリューム登録やボリューム再構成のような下流アプリケーションに対する勾配に基づく最適化を可能にする。
ReMINDデータセットの評価は、DiffUSが脳MRIデータから解剖学的に正確な超音波画像を生成する能力を示している。
関連論文リスト
- UltraRay: Full-Path Ray Tracing for Enhancing Realism in Ultrasound Simulation [43.433512581459176]
レイトレーシングアルゴリズムを用いてエコーデータを生成する新しい超音波シミュレーションパイプラインを提案する。
先進的な超音波イメージングを再現するため,平面波イメージングに最適化されたレイエミッション方式を導入し,遅延とステアリング機能を取り入れた。
提案手法であるUltraRayは,視覚的品質の向上だけでなく,シミュレーション画像のリアリズムの向上にも寄与する。
論文 参考訳(メタデータ) (2025-01-10T10:07:41Z) - PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution Enhancement [36.20701982473809]
超音波イメージングシステムのインパルス機能はポイントスプレッド機能(PSF)と呼ばれ、画像形成過程における反射体の空間分布と結びついている。
我々は、より一般的なBモード画像を直接扱う、モデル付きPSFを用いた物理ベースのデコンボリューションプロセスを導入する。
Inlicit Neural Representations (INR) を利用することで、空間位置からそれぞれのエコー原性値への連続的なマッピングを学習し、離散化された画像空間を効果的に補償する。
論文 参考訳(メタデータ) (2024-08-07T09:52:30Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Cardiac ultrasound simulation for autonomous ultrasound navigation [4.036497185262817]
本稿では,他のモーダルや任意の位置から大量の超音波画像を生成する手法を提案する。
本稿では,他のモダリティからのセグメンテーション,最適化されたデータ表現,GPUによるモンテカルロ経路のトレースを用いた新しいシミュレーションパイプラインを提案する。
提案手法により,患者固有の超音波画像の高速かつ正確な生成が可能となり,ナビゲーション関連タスクのためのトレーニングネットワークのユーザビリティが実証された。
論文 参考訳(メタデータ) (2024-02-09T15:14:48Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - Deep MRI Reconstruction with Radial Subsampling [2.7998963147546148]
k空間データにサブサンプリングマスクを適用することは、実際の臨床環境でk空間データの迅速な取得をシミュレートする方法である。
訓練された深層ニューラルネットワークが出力する再構成の質に対して,リチリニア・ラジアル・リフレクション・サブサンプリングを適用させる効果を比較検討し,検討した。
論文 参考訳(メタデータ) (2021-08-17T17:45:51Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。