論文の概要: UMRE: A Unified Monotonic Transformation for Ranking Ensemble in Recommender Systems
- arxiv url: http://arxiv.org/abs/2508.07613v1
- Date: Mon, 11 Aug 2025 04:38:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.943483
- Title: UMRE: A Unified Monotonic Transformation for Ranking Ensemble in Recommender Systems
- Title(参考訳): UMRE:レコメンダシステムにおけるランク付けアンサンブルのための統一モノトニック変換
- Authors: Zhengrui Xu, Zhe Yang, Zhengxiao Guo, Shukai Liu, Luocheng Lin, Xiaoyan Liu, Yongqi Liu, Han Li,
- Abstract要約: アンサンブルソートにおける従来の手法の限界に対処する新しい統一モノトニックランキングアンサンブル(UMRE)フレームワークを提案する。
UMREは、非拘束型モノトニックネットワーク(UMNN)で手作り変換を置き換え、正の神経積分を統合することで、表現力のある厳密な単調関数を学習する。
- 参考スコア(独自算出の注目度): 12.86577067165784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Industrial recommender systems commonly rely on ensemble sorting (ES) to combine predictions from multiple behavioral objectives. Traditionally, this process depends on manually designed nonlinear transformations (e.g., polynomial or exponential functions) and hand-tuned fusion weights to balance competing goals -- an approach that is labor-intensive and frequently suboptimal in achieving Pareto efficiency. In this paper, we propose a novel Unified Monotonic Ranking Ensemble (UMRE) framework to address the limitations of traditional methods in ensemble sorting. UMRE replaces handcrafted transformations with Unconstrained Monotonic Neural Networks (UMNN), which learn expressive, strictly monotonic functions through the integration of positive neural integrals. Subsequently, a lightweight ranking model is employed to fuse the prediction scores, assigning personalized weights to each prediction objective. To balance competing goals, we further introduce a Pareto optimality strategy that adaptively coordinates task weights during training. UMRE eliminates manual tuning, maintains ranking consistency, and achieves fine-grained personalization. Experimental results on two public recommendation datasets (Kuairand and Tenrec) and online A/B tests demonstrate impressive performance and generalization capabilities.
- Abstract(参考訳): 産業レコメンデータシステムは、複数の行動目標からの予測を組み合わせるために、通常、アンサンブルソート(ES)に依存している。
伝統的に、このプロセスは手動で設計された非線形変換(例えば多項式や指数関数)と、競合する目標のバランスをとるために手動で調整された融合重みに依存する。
本稿では,アンサンブルソートにおける従来の手法の限界に対処する,統一モノトニックランキングアンサンブル(UMRE)フレームワークを提案する。
UMREは、非拘束型モノトニックニューラルネットワーク(UMNN)で手作り変換を置き換え、正の神経積分を統合することで、表現力のある厳密な単調関数を学習する。
その後、予測スコアを融合させ、各予測目標にパーソナライズされた重みを割り当てるために、軽量なランキングモデルが使用される。
競合する目標のバランスをとるために、トレーニング中にタスクの重みを適応的に調整するパレート最適戦略を導入する。
UMREは手動チューニングを排除し、ランキング一貫性を維持し、きめ細かいパーソナライゼーションを実現する。
2つのパブリックレコメンデーションデータセット(KuairandとTenrec)とオンラインA/Bテストの実験結果は、素晴らしいパフォーマンスと一般化能力を示している。
関連論文リスト
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - EnsIR: An Ensemble Algorithm for Image Restoration via Gaussian Mixture Models [70.60381055741391]
画像復元の課題は、説明された問題に関連し、単一のモデル予測と地道のずれをもたらす。
アンサンブル学習は、複数のベースモデルの予測を組み合わせることで、これらの偏差に対処することを目的としている。
我々は予測候補のアンサンブル重みを推定するために予測(EM)に基づくアルゴリズムを用いる。
我々のアルゴリズムは、モデルに依存しない訓練不要であり、様々なトレーニング済み画像復元モデルのシームレスな統合と強化を可能にする。
論文 参考訳(メタデータ) (2024-10-30T12:16:35Z) - Regularized Neural Ensemblers [55.15643209328513]
本研究では,正規化ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ランダムにベースモデル予測をドロップすることで,アンサンブルモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性の低い境界を提供し、過度な適合を減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - Adaptive Neural Ranking Framework: Toward Maximized Business Goal for
Cascade Ranking Systems [33.46891569350896]
カスケードランキングは、オンライン広告とレコメンデーションシステムにおける大規模なトップk選択問題に広く使われている。
それまでの学習からランクへの取り組みは、モデルに完全な順序やトップクオーダを学習させることに重点を置いていた。
我々はこの手法をアダプティブ・ニューラルランキング・フレームワーク (Adaptive Neural Ranking Framework, ARF) と命名する。
論文 参考訳(メタデータ) (2023-10-16T14:43:02Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - Differentiable Model Selection for Ensemble Learning [37.99501959301896]
本稿では、機械学習と最適化を統合した微分可能なモデル選択のための新しいフレームワークを提案する。
このフレームワークは、個々の事前学習されたモデルの出力を組み合わせて、特定の入力サンプルに対して適切なアンサンブルメンバーを選択する戦略であるアンサンブル学習用に調整されている。
論文 参考訳(メタデータ) (2022-11-01T03:37:49Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
そこで我々は,FeatDistLossというシンプルな手法により,一貫性の規則化を改良したフレームワークを提案する。
実験結果から,本モデルは様々なデータセットや設定のための新しい技術状態を定義する。
論文 参考訳(メタデータ) (2021-12-10T20:46:13Z) - Adaptive Consistency Regularization for Semi-Supervised Transfer
Learning [31.66745229673066]
我々は,半教師付き学習と移動学習を共同で検討し,より実践的で競争的なパラダイムへと導いた。
事前学習した重みとラベルなしの目標サンプルの両方の価値をよりよく活用するために、適応整合正則化を導入する。
提案手法は,Pseudo Label,Mean Teacher,MixMatchといった,最先端の半教師付き学習技術より優れた適応整合性正規化を実現する。
論文 参考訳(メタデータ) (2021-03-03T05:46:39Z) - Elastic Consistency: A General Consistency Model for Distributed
Stochastic Gradient Descent [28.006781039853575]
近年の機械学習の進歩を支える重要な要素は、大規模な分散メモリ環境で機械学習モデルをトレーニングする能力である。
本稿では,大規模機械学習モデルの学習に使用される一般収束手法を提案する。
我々のフレームワークは弾性弾性境界と呼ばれ、様々な分散SGD法に対する収束境界を導出することができる。
論文 参考訳(メタデータ) (2020-01-16T16:10:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。