論文の概要: An Iterative Reconstruction Method for Dental Cone-Beam Computed Tomography with a Truncated Field of View
- arxiv url: http://arxiv.org/abs/2508.07618v1
- Date: Mon, 11 Aug 2025 04:54:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.946392
- Title: An Iterative Reconstruction Method for Dental Cone-Beam Computed Tomography with a Truncated Field of View
- Title(参考訳): 縮小視野を有する歯科用コーンビームCTの反復再構成法
- Authors: Hyoung Suk Park, Kiwan Jeon,
- Abstract要約: 歯科用コーンビームCT(CBCT)では、コンパクトで費用対効果の高いシステム設計は小さな検出器を使用することが多い。
反復的再構成アプローチでは、トランカットされたFOV内の実際の射影と前方射影との差が反復的に蓄積される。
歯科用CBCTにおけるトラクションアーティファクトの軽減のための2段階的アプローチを提案する。
- 参考スコア(独自算出の注目度): 0.08928976797184517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In dental cone-beam computed tomography (CBCT), compact and cost-effective system designs often use small detectors, resulting in a truncated field of view (FOV) that does not fully encompass the patient's head. In iterative reconstruction approaches, the discrepancy between the actual projection and the forward projection within the truncated FOV accumulates over iterations, leading to significant degradation in the reconstructed image quality. In this study, we propose a two-stage approach to mitigate truncation artifacts in dental CBCT. In the first stage, we employ Implicit Neural Representation (INR), leveraging its superior representation power, to generate a prior image over an extended region so that its forward projection fully covers the patient's head. To reduce computational and memory burdens, INR reconstruction is performed with a coarse voxel size. The forward projection of this prior image is then used to estimate the discrepancy due to truncated FOV in the measured projection data. In the second stage, the discrepancy-corrected projection data is utilized in a conventional iterative reconstruction process within the truncated region. Our numerical results demonstrate that the proposed two-grid approach effectively suppresses truncation artifacts, leading to improved CBCT image quality.
- Abstract(参考訳): 歯科用コーンビームCT(CBCT)では、コンパクトで費用対効果の高いシステム設計は、しばしば小さな検出器を用いており、結果として患者の頭部を完全に包含しない縮小視野(FOV)が生じる。
反復的再構成手法では、縮小されたFOV内の実際の投影と前方投影との差が反復的に蓄積され、再構成された画像の品質が著しく低下する。
本研究では, 歯科用CBCTにおけるトラクションアーティファクトを緩和するための2段階的アプローチを提案する。
第一段階では、インプリシット・ニューラル・リ表現(INR)を用いて、その優れた表現力を利用して、前向きのプロジェクションが患者の頭部を完全に覆うように、前向きの画像を生成する。
計算およびメモリ負荷を低減するため、粗いボクセルサイズでINR再構成を行う。
そして、この先行画像の前方投影を用いて、計測された投影データにおいて、乱れたFOVによる誤差を推定する。
第2段階では、切削領域内の従来の反復的再構成プロセスにおいて、差分補正プロジェクションデータを利用する。
以上の結果から,提案手法はトラクションアーチファクトを効果的に抑制し,CBCT画像の画質が向上することが示された。
関連論文リスト
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction [9.848266253196307]
Cone-Beam Computed Tomography (CBCT) は医用画像の撮影に欠かせない手法であるが、放射線照射が臨床応用に懸念をもたらす。
本稿では,3次元ガウス空間における特徴分布を表現するために3次元ガウス空間を利用する新しい再構成フレームワーク,DIF-Gaussianを提案する。
2つの公開データセット上でDIF-Gaussianを評価し,従来の最先端手法よりもはるかに優れた再構成性能を示した。
論文 参考訳(メタデータ) (2024-07-01T08:48:04Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction [45.00528216648563]
Diffusion Prior Driven Neural Representation (DPER) は、異常に不適切なCT再構成逆問題に対処するために設計された、教師なしのフレームワークである。
DPERは、半二次分割法(HQS)アルゴリズムを採用し、逆問題からデータ忠実度とサブプロブレム前の分布に分解する。
LACTにおけるDPERの性能評価と2つの公開データセットを用いた超SVCT再構成に関する総合的な実験を行った。
論文 参考訳(メタデータ) (2024-04-27T12:55:13Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Diffusion Prior Regularized Iterative Reconstruction for Low-dose CT [9.866443235747287]
拡散前に正規化された反復的再構成アルゴリズムを導入する。
また、ネステロフ運動量加速技術も取り入れた。
本手法は,高分解能CT画像の再構成を最小限の放射線で行うことが可能である。
論文 参考訳(メタデータ) (2023-10-10T19:08:57Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
神経減衰場を学習し,スパースビューCBCT再構成のためのSNAFを提案する。
提案手法は,入力ビューが20程度しかなく,高再生品質(30以上のPSNR)で優れた性能を実現する。
論文 参考訳(メタデータ) (2022-11-30T14:51:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。