論文の概要: Semantic-Enhanced Time-Series Forecasting via Large Language Models
- arxiv url: http://arxiv.org/abs/2508.07697v1
- Date: Mon, 11 Aug 2025 07:19:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:28.986632
- Title: Semantic-Enhanced Time-Series Forecasting via Large Language Models
- Title(参考訳): 大規模言語モデルによるセマンティック拡張時系列予測
- Authors: Hao Liu, Chun Yang, Zhang xiaoxing, Xiaobin Zhu,
- Abstract要約: 時系列予測は、金融、エネルギー、気象学、IoTアプリケーションにおいて重要な役割を果たす。
近年,大規模言語モデル(LLM)の一般化機能を活用して時系列予測に適応し,有望な性能を実現している。
本稿では,時系列の固有周期性と異常特性を探索し,意味空間に埋め込むセマンティック拡張LDM(SE-LLM)を提案する。
- 参考スコア(独自算出の注目度): 16.17642828644504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting plays a significant role in finance, energy, meteorology, and IoT applications. Recent studies have leveraged the generalization capabilities of large language models (LLMs) to adapt to time series forecasting, achieving promising performance. However, existing studies focus on token-level modal alignment, instead of bridging the intrinsic modality gap between linguistic knowledge structures and time series data patterns, greatly limiting the semantic representation. To address this issue, we propose a novel Semantic-Enhanced LLM (SE-LLM) that explores the inherent periodicity and anomalous characteristics of time series to embed into the semantic space to enhance the token embedding. This process enhances the interpretability of tokens for LLMs, thereby activating the potential of LLMs for temporal sequence analysis. Moreover, existing Transformer-based LLMs excel at capturing long-range dependencies but are weak at modeling short-term anomalies in time-series data. Hence, we propose a plugin module embedded within self-attention that models long-term and short-term dependencies to effectively adapt LLMs to time-series analysis. Our approach freezes the LLM and reduces the sequence dimensionality of tokens, greatly reducing computational consumption. Experiments demonstrate the superiority performance of our SE-LLM against the state-of-the-art (SOTA) methods.
- Abstract(参考訳): 時系列予測は、金融、エネルギー、気象学、IoTアプリケーションにおいて重要な役割を果たす。
近年,大規模言語モデル(LLM)の一般化機能を活用して時系列予測に適応し,有望な性能を実現している。
しかし、既存の研究では、言語知識構造と時系列データパターンの固有のモダリティギャップを埋める代わりに、トークンレベルのモダリティアライメントに焦点を当てており、意味表現を大幅に制限している。
この問題に対処するために,時系列の固有周期性と異常特性を探索し,意味空間に埋め込み,トークンの埋め込みを強化するセマンティック拡張LDM (SE-LLM) を提案する。
このプロセスはLLMのトークンの解釈可能性を高め、時間的シーケンス解析のためのLLMのポテンシャルを活性化する。
さらに,Transformer をベースとした既存の LLM は,長距離依存関係の取得に優れるが,時系列データにおける短期異常のモデル化には弱い。
そこで本稿では,LLMを時系列解析に効果的に適用するために,長期および短期の依存関係をモデル化するプラグインモジュールを提案する。
提案手法は, LLMを凍結し, トークンの列次元を小さくし, 計算量を大幅に削減する。
実験により,SE-LLMの最先端(SOTA)手法に対する優位性を実証した。
関連論文リスト
- LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) は、金融計画や健康モニタリングなど、多くの現実世界のドメインにおいて重要である。
既存のLarge Language Models (LLM) は通常、時系列データ固有の特性を無視するため、非最適に実行する。
時系列データから基本的なtextitPatterns と有意義な textitSemantics を学習し,TLF のための LLM-PS を提案する。
論文 参考訳(メタデータ) (2025-03-12T11:45:11Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
MTSFのためのクロスモーダルLCMファインチューニング(CALF)フレームワークを提案する。
分散の相違を低減するため,クロスモーダルマッチングモジュールを開発した。
CALFは、長期および短期の予測タスクの最先端のパフォーマンスを確立する。
論文 参考訳(メタデータ) (2024-03-12T04:04:38Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
大規模言語モデル(LLM)は多くの分野に適用され、近年急速に発展してきた。
近年の研究では、大規模な言語モデルを、さらなる微調整を行なわずに、アンフェロショット時系列推論として扱っている。
本研究は,LLMが周期性に欠けるデータセットにおいて,明確なパターンや傾向を持つ時系列予測において良好に機能することを示す。
論文 参考訳(メタデータ) (2024-02-16T17:15:28Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。