論文の概要: Rethinking Self-Replication: Detecting Distributed Selfhood in the Outlier Cellular Automaton
- arxiv url: http://arxiv.org/abs/2508.08047v1
- Date: Mon, 11 Aug 2025 14:49:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 21:23:29.153944
- Title: Rethinking Self-Replication: Detecting Distributed Selfhood in the Outlier Cellular Automaton
- Title(参考訳): 自己複製の再考:アウトリアセルオートマトンにおける分散自己形成の検出
- Authors: Arend Hintze, Clifford Bohm,
- Abstract要約: 細胞性オートマトンにおける自然自己複製は、長い間稀であると考えられてきた。
我々はそのような複製が無力化できるという公式な因果的証拠を提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spontaneous self-replication in cellular automata has long been considered rare, with most known examples requiring careful design or artificial initialization. In this paper, we present formal, causal evidence that such replication can emerge unassisted -- and that it can do so in a distributed, multi-component form. Building on prior work identifying complex dynamics in the Outlier rule, we introduce a data-driven framework that reconstructs the full causal ancestry of patterns in a deterministic cellular automaton. This allows us to rigorously identify self-replicating structures via explicit causal lineages. Our results show definitively that self-replicators in the Outlier CA are not only spontaneous and robust, but are also often composed of multiple disjoint clusters working in coordination, raising questions about some conventional notions of individuality and replication in artificial life systems.
- Abstract(参考訳): セルオートマトンにおける自発的な自己複製は、設計や人工的初期化を必要とする最もよく知られた例である。
本稿では,そのような複製が非援助的であり,分散された多成分形式で行うことができるという,公式な因果的証拠を提示する。
ここでは, 決定論的セルオートマトンにおけるパターンの因果関係を完全に再構築するデータ駆動型フレームワークを提案する。
これにより、明示的な因果関係によって自己複製構造を厳格に識別することができる。
以上の結果から,アウトリエCAの自己複製器は自発的かつ堅牢であるだけでなく,協調作業を行う複数の解離クラスタから構成されることが多いことが判明した。
関連論文リスト
- Mechanical Self-replication [0.0]
本研究では,生体細胞内の生物学的過程にインスパイアされた自己複製機械系の理論的モデルを提案する。
モデルは自己複製をコアコンポーネントに分解し、それぞれが基本ブロック型のセットから構築された単一のマシンによって実行される。
論文 参考訳(メタデータ) (2024-07-18T09:49:50Z) - Self-Supervised Multi-Object Tracking For Autonomous Driving From
Consistency Across Timescales [53.55369862746357]
自己管理型マルチオブジェクトトラッカーは、生のドメイン固有データから学習できるという大きな可能性を秘めている。
しかし、その再識別精度は、監督対象よりも低い。
本稿では,複数の連続フレームから再同定特徴を自己教師付きで学習できる学習目標を提案する。
論文 参考訳(メタデータ) (2023-04-25T20:47:29Z) - Learning Causal Representations of Single Cells via Sparse Mechanism
Shift Modeling [3.2435888122704037]
本稿では,各摂動を未知の,しかしスパースな,潜伏変数のサブセットを標的とした介入として扱う単一細胞遺伝子発現データの深部生成モデルを提案する。
これらの手法をシミュレーションした単一セルデータ上でベンチマークし、潜伏単位回復、因果的目標同定、領域外一般化における性能を評価する。
論文 参考訳(メタデータ) (2022-11-07T15:47:40Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Growing Isotropic Neural Cellular Automata [63.91346650159648]
我々は、元のGrowing NCAモデルには、学習された更新規則の異方性という重要な制限があると主張している。
細胞系は2つの方法のいずれかによって、正確な非対称パターンを成長させる訓練が可能であることを実証する。
論文 参考訳(メタデータ) (2022-05-03T11:34:22Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z) - High-dimensional separability for one- and few-shot learning [58.8599521537]
この作業は、実用的な質問、人工知能(AI)エラーの修正によって進められている。
特殊な外部デバイスである修正器が開発されている。従来のAIシステムを変更することなく、迅速かつ非イテレーティブなシステム修正を提供する必要がある。
AIシステムの新しいマルチコレクタが提示され、深層畳み込みニューラルネットワークによってエラーを予測し、新しいクラスのオブジェクトを学習する例が紹介される。
論文 参考訳(メタデータ) (2021-06-28T14:58:14Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。