論文の概要: First Ask Then Answer: A Framework Design for AI Dialogue Based on Supplementary Questioning with Large Language Models
- arxiv url: http://arxiv.org/abs/2508.08308v1
- Date: Fri, 08 Aug 2025 13:39:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.157994
- Title: First Ask Then Answer: A Framework Design for AI Dialogue Based on Supplementary Questioning with Large Language Models
- Title(参考訳): 最初のAsk Then Answer: 大規模言語モデルによる補足的質問に基づくAI対話のためのフレームワーク設計
- Authors: Chuanruo Fu, Yuncheng Du,
- Abstract要約: First Ask Then Answer (FATA) は応答生成に先立ってユーザに対して多次元補足質問を生成する。
既存の明確化アプローチとは対照的に、FATAは完全性とユーザ参加を重視している。
実験の結果,FATAはB-Promptを約40%上回った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) often struggle to deliver accurate and actionable answers when user-provided information is incomplete or ill-specified. We propose a new interaction paradigm, First Ask Then Answer (FATA), in which, through prompt words, LLMs are guided to proactively generate multidimensional supplementary questions for users prior to response generation. Subsequently, by integrating user-provided supplementary information with the original query through sophisticated prompting techniques, we achieve substantially improved response quality and relevance. In contrast to existing clarification approaches -- such as the CLAM framework oriented to ambiguity and the self-interrogation Self-Ask method -- FATA emphasizes completeness (beyond mere disambiguation) and user participation (inviting human input instead of relying solely on model-internal reasoning). It also adopts a single-turn strategy: all clarifying questions are produced at once, thereby reducing dialogue length and improving efficiency. Conceptually, FATA uses the reasoning power of LLMs to scaffold user expression, enabling non-expert users to formulate more comprehensive and contextually relevant queries. To evaluate FATA, we constructed a multi-domain benchmark and compared it with two controls: a baseline prompt (B-Prompt) and a context-enhanced expert prompt (C-Prompt). Experimental results show that FATA outperforms B-Prompt by approximately 40% in aggregate metrics and exhibits a coefficient of variation 8% lower than C-Prompt, indicating superior stability.
- Abstract(参考訳): LLM(Large Language Models)は、ユーザが提供する情報が不完全あるいは不特定である場合に、正確で実行可能な回答を提供するのに苦労することが多い。
本稿では, 応答生成に先立って, ユーザに対して多次元補間質問を積極的に生成するための対話パラダイムであるFirst Ask Then Answer (FATA)を提案する。
その後、ユーザが提供する補足情報と元のクエリとを高度なプロンプト技術で統合することにより、応答品質と関連性を大幅に改善する。
曖昧さを指向したCLAMフレームワークやセルフインターロゲーションのセルフタスクメソッドなど、既存の明確化アプローチとは対照的に、FATAは完全性(単なる曖昧さに加えて)とユーザ参加(モデル内部推論のみに頼るのではなく、人間の入力を招待する)を強調している。
質問の明確化はすべて一度に行われるので、対話の長さを減らし、効率を向上する。
概念的には、FATAはLLMの推論能力を使ってユーザ表現を足場にし、非専門家のユーザがより包括的で文脈的に関連するクエリを定式化することができる。
FATAを評価するために、我々はマルチドメイン・ベンチマークを構築し、ベースライン・プロンプト(B-Prompt)とコンテキスト強化・エキスパート・プロンプト(C-Prompt)の2つのコントロールと比較した。
実験の結果,FATAはB-Promptよりも約40%優れ,C-Promptよりも8%低い変動係数を示し,安定性に優れていた。
関連論文リスト
- Teaching Language Models To Gather Information Proactively [53.85419549904644]
大規模言語モデル(LLM)は、ますます協力的なパートナーとして機能することが期待されている。
本研究では,アクティブな情報収集という新たなタスクパラダイムを導入する。
キー情報をマスキングする、部分的に特定された現実世界のタスクを生成するスケーラブルなフレームワークを設計する。
このセットアップの中核となるイノベーションは、真に新しい暗黙のユーザー情報を引き出す質問に報酬を与える、強化された微調整戦略です。
論文 参考訳(メタデータ) (2025-07-28T23:50:09Z) - Contextual Candor: Enhancing LLM Trustworthiness Through Hierarchical Unanswerability Detection [0.0]
本稿では,大規模言語モデル(LLM)のための新しいハイブリッド学習パラダイムであるReinforced Unanswerability Learning (RUL)を紹介する。
RULは、多段階学習戦略によって導かれるLLMの生成コアに、識別不能な予測ヘッドを統合する。
実験は、RULの優れた性能を示し、文、段落、ランキングレベルにわたる解答不能検出において、はるかに高い精度を達成する。
論文 参考訳(メタデータ) (2025-06-01T17:59:27Z) - CLEAR-KGQA: Clarification-Enhanced Ambiguity Resolution for Knowledge Graph Question Answering [13.624962763072899]
KGQAシステムは通常、ユーザクエリは曖昧であると仮定するが、これは現実世界のアプリケーションではめったに行われない仮定である。
本稿では,対話的明確化を通じて,エンティティのあいまいさ(類似した名前を持つエンティティの区別など)と意図のあいまいさ(ユーザクエリの異なる解釈を明確にするなど)を動的に扱う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-13T17:34:35Z) - MARS: A Multi-Agent Framework Incorporating Socratic Guidance for Automated Prompt Optimization [30.748085697067154]
ソクラティックガイダンス(MARS)を取り入れたマルチエージェントフレームワークを提案する。
MARSは7つのエージェントから構成され、それぞれ異なる機能を持ち、Plannerを自律的に使用して最適化パスを設計する。
提案手法の有効性を検証するため,様々なデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2025-03-21T06:19:55Z) - Learning to Clarify: Multi-turn Conversations with Action-Based Contrastive Self-Training [33.57497419019826]
アクションベースのコントラスト自己学習は、多ターン会話モデリングにおけるデータ効率のよい対話ポリシー学習を可能にする。
動作ラベルがない場合でも、データ効率のよいチューニングシナリオにおいてACTの有効性を実証する。
また,会話におけるあいまいさを暗黙的に認識し,説明できるかどうかを調べることで,LLMが会話エージェントとして機能する能力を評価することを提案する。
論文 参考訳(メタデータ) (2024-05-31T22:44:48Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
既成のLarge Language Models (LLM) の推論能力を高めるため, 単純で汎用的で効果的なプロンプト手法であるRe2を導入する。
CoT (Chain-of-Thought) など、ほとんどの思考を刺激する手法とは異なり、Re2 は質問を2回処理することで入力に焦点を移し、理解プロセスを強化する。
提案手法の有効性と汎用性を検証するため,14のデータセットにまたがる広範囲な推論ベンチマークでRe2を評価した。
論文 参考訳(メタデータ) (2023-09-12T14:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。