論文の概要: Image selective encryption analysis using mutual information in CNN based embedding space
- arxiv url: http://arxiv.org/abs/2508.08832v1
- Date: Tue, 12 Aug 2025 10:39:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.396117
- Title: Image selective encryption analysis using mutual information in CNN based embedding space
- Title(参考訳): CNNを用いた埋め込み空間における相互情報を用いた画像選択暗号解析
- Authors: Ikram Messadi, Giulia Cervia, Vincent Itier,
- Abstract要約: 本研究は,情報理論上の保証がまだ探索されていない領域である画像データの漏洩について検討する。
深層学習,情報理論,暗号の交わりにおいて,選択的に暗号化された画像からの漏洩を検出するために相互情報(MI)推定器を用いて検討する。
- 参考スコア(独自算出の注目度): 2.66269503676104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As digital data transmission continues to scale, concerns about privacy grow increasingly urgent - yet privacy remains a socially constructed and ambiguously defined concept, lacking a universally accepted quantitative measure. This work examines information leakage in image data, a domain where information-theoretic guarantees are still underexplored. At the intersection of deep learning, information theory, and cryptography, we investigate the use of mutual information (MI) estimators - in particular, the empirical estimator and the MINE framework - to detect leakage from selectively encrypted images. Motivated by the intuition that a robust estimator would require a probabilistic frameworks that can capture spatial dependencies and residual structures, even within encrypted representations - our work represent a promising direction for image information leakage estimation.
- Abstract(参考訳): しかし、プライバシーは社会的に構築され、明確に定義された概念であり、普遍的に受け入れられる量的尺度が欠如している。
本研究は,情報理論上の保証がまだ探索されていない領域である画像データの漏洩について検討する。
深層学習,情報理論,暗号の交差点では,相互情報(MI)推定器(特に経験的推定器とMINEフレームワーク)を用いて,選択的に暗号化された画像からの漏洩を検出する。
堅牢な推定器は、暗号化された表現においても空間的依存関係や残留構造をキャプチャできる確率的フレームワークを必要とするという直感によって、我々の作業は、画像情報漏洩推定のための有望な方向を表す。
関連論文リスト
- Information-driven design of imaging systems [13.875054825191292]
未知の物体間の相互情報とそのノイズを測定するためのデータ駆動型手法を提案する。
我々は,カラー撮影,電波天文学,レンズレスイメージング,顕微鏡によるシステム性能の予測など,多様な応用分野にまたがるアプローチを検証する。
我々の研究は情報理論を、幅広いアプリケーションにわたって画像システムを分析し設計するための強力で実用的なツールとして解き放つ。
論文 参考訳(メタデータ) (2024-05-31T00:57:58Z) - Using Images as Covariates: Measuring Curb Appeal with Deep Learning [0.0]
本稿では、画像データを従来の計量モデルに統合する革新的な手法を詳述する。
住宅不動産の販売価格予測に動機づけられた深層学習の力を活用して「情報」を付加する
各画像内で提示される特異な特徴は、さらに汎視的セグメンテーションによって符号化された。
符号化されたデータに基づいてトレーニングされたニューラルネットワークからの予測は、サンプル外予測能力を改善する。
論文 参考訳(メタデータ) (2024-03-29T02:03:00Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
我々は、最悪の近傍データセット上でのモデル分布間のKLばらつきのプライバシー境界を証明した。
このKLプライバシー境界は、トレーニング中にモデルパラメータに対して期待される2乗勾配ノルムによって決定される。
論文 参考訳(メタデータ) (2023-10-31T16:13:22Z) - Robustness and invariance properties of image classifiers [8.970032486260695]
ディープニューラルネットワークは多くの画像分類タスクで印象的な結果を得た。
ディープネットワークは、多種多様なセマンティック保存画像修正に対して堅牢ではない。
画像分類器の小さなデータ分散シフトに対する堅牢性の低さは、その信頼性に関する深刻な懸念を引き起こす。
論文 参考訳(メタデータ) (2022-08-30T11:00:59Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
本稿では,DQNエージェントが,離散的かつ連続的な状態空間を持つ環境でどのように動作するかを予備的,実験的に検討する。
その結果,非決定論的暗号が存在する場合でも,エージェントは依然として小さな状態空間で学習することができるが,より複雑な環境では性能が低下することがわかった。
論文 参考訳(メタデータ) (2021-09-16T21:59:37Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
本稿では,シーケンスデータの有用な表現が潜在空間における単純な構造を示すべきという直感に基づく,シーケンスデータの自己教師型表現学習法を提案する。
我々は,過去と将来のウィンドウ間の相互情報である潜在特徴系列の予測情報を最大化することにより,この潜時構造を奨励する。
提案手法は,ノイズの多い動的システムの潜時空間を復元し,タスク予測のための予測特徴を抽出し,エンコーダを大量の未ラベルデータで事前訓練する場合に音声認識を改善する。
論文 参考訳(メタデータ) (2020-10-07T03:34:01Z) - A Heteroscedastic Uncertainty Model for Decoupling Sources of MRI Image
Quality [3.5480752735999417]
セグメンテーションなどの下流分析を成功させるためには、医用画像の品質管理(QC)が不可欠である。
本研究では,不確実性を推定する確率的ネットワークをヘテロセダスティックノイズモデルにより構築し,そのプロセスを自動化することを目的とする。
シミュレーションされた人工物を用いて訓練したモデルは、実世界の画像に不確実性を示す情報的尺度を提供するとともに、人間のレーダが特定した問題画像に対する不確実性予測を検証する。
論文 参考訳(メタデータ) (2020-01-31T16:04:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。