論文の概要: ASPD: Unlocking Adaptive Serial-Parallel Decoding by Exploring Intrinsic Parallelism in LLMs
- arxiv url: http://arxiv.org/abs/2508.08895v1
- Date: Tue, 12 Aug 2025 12:35:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.422956
- Title: ASPD: Unlocking Adaptive Serial-Parallel Decoding by Exploring Intrinsic Parallelism in LLMs
- Title(参考訳): ASPD: LLMにおける固有並列性探索による適応シリアル-パラレルデコーディングのアンロック
- Authors: Keyu Chen, Zhifeng Shen, Daohai Yu, Haoqian Wu, Wei Wen, Jianfeng He, Ruizhi Qiao, Xing Sun,
- Abstract要約: 大規模言語モデル(LLM)は、自動回帰デコードパラダイムのため、推論遅延の大きな問題を生じさせる。
本稿では、並列化可能なデータの自動構築と効率的な並列化機構の2つの課題に対処する適応シリアル-パラレルデコーディング(ASPD)を提案する。
我々のフレームワークは、効率的なLCM並列推論のための基盤となるベンチマークを設定し、AIによるカスタマーサービスボットや回答検索エンジンのようなレイテンシに敏感なアプリケーションへのデプロイの道を開く。
- 参考スコア(独自算出の注目度): 34.477777651648914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing scale and complexity of large language models (LLMs) pose significant inference latency challenges, primarily due to their autoregressive decoding paradigm characterized by the sequential nature of next-token prediction. By re-examining the outputs of autoregressive models, we observed that some segments exhibit parallelizable structures, which we term intrinsic parallelism. Decoding each parallelizable branch simultaneously (i.e. parallel decoding) can significantly improve the overall inference speed of LLMs. In this paper, we propose an Adaptive Serial-Parallel Decoding (ASPD), which addresses two core challenges: automated construction of parallelizable data and efficient parallel decoding mechanism. More specifically, we introduce a non-invasive pipeline that automatically extracts and validates parallelizable structures from the responses of autoregressive models. To empower efficient adaptive serial-parallel decoding, we implement a Hybrid Decoding Engine which enables seamless transitions between serial and parallel decoding modes while maintaining a reusable KV cache, maximizing computational efficiency. Extensive evaluations across General Tasks, Retrieval-Augmented Generation, Mathematical Reasoning, demonstrate that ASPD achieves unprecedented performance in both effectiveness and efficiency. Notably, on Vicuna Bench, our method achieves up to 3.19x speedup (1.85x on average) while maintaining response quality within 1% difference compared to autoregressive models, realizing significant acceleration without compromising generation quality. Our framework sets a groundbreaking benchmark for efficient LLM parallel inference, paving the way for its deployment in latency-sensitive applications such as AI-powered customer service bots and answer retrieval engines.
- Abstract(参考訳): 大規模言語モデル (LLMs) のスケールと複雑さの増大は、主に次世代の予測のシーケンシャルな性質を特徴とする自己回帰デコードパラダイムによって、推論遅延の重大な問題を引き起こす。
自己回帰モデルの出力を再検討することにより、いくつかのセグメントが並列化可能な構造を示し、本質的並列性(intrinsic parallelism)と呼ぶ。
各並列化可能な分岐の復号化(すなわち並列復号化)は、LLMの全体的な推論速度を大幅に向上させることができる。
本稿では、並列化可能なデータの自動構築と効率的な並列化機構の2つの課題に対処する適応シリアル-パラレルデコーディング(ASPD)を提案する。
具体的には、自動回帰モデルの応答から並列化可能な構造を自動的に抽出し、検証する非侵襲パイプラインを導入する。
並列デコーディングを効率よく行うために,再利用可能なKVキャッシュを維持しつつ,シリアルモードと並列デコーディングモードのシームレスな遷移を可能にし,計算効率を最大化するハイブリッドデコーディングエンジンを実装した。
一般タスク、検索・拡張生成、数学的推論といった幅広い評価は、ASPDが有効性と効率の両方で前例のない性能を達成することを実証している。
特に,Vicuna Benchでは,応答品質を自己回帰モデルと1%の差で維持しながら,最大3.19倍の高速化(平均1.85倍)を実現し,生成品質を損なうことなく大幅な加速を実現する。
我々のフレームワークは、効率的なLCM並列推論のための基盤となるベンチマークを設定し、AIによるカスタマーサービスボットや回答検索エンジンのようなレイテンシに敏感なアプリケーションへのデプロイの道を開く。
関連論文リスト
- Accelerating Diffusion LLMs via Adaptive Parallel Decoding [50.9948753314669]
並列にサンプリングされたトークンの数を動的に調整する新しい手法であるアダプティブ並列復号法(APD)を導入する。
APDは、ダウンストリームベンチマークで最小限の品質劣化を伴って、非常に高いスループットを提供する。
論文 参考訳(メタデータ) (2025-05-31T06:10:10Z) - Pangu Embedded: An Efficient Dual-system LLM Reasoner with Metacognition [95.54406667705999]
Pangu Embeddedは、Ascend Neural Processing Units (NPU) 上で開発された効率的なLarge Language Model (LLM) 推論器である。
既存の推論最適化 LLM でよく見られる計算コストと推論遅延の問題に対処する。
単一の統一モデルアーキテクチャ内で、迅速な応答と最先端の推論品質を提供する。
論文 参考訳(メタデータ) (2025-05-28T14:03:02Z) - Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints [14.341123057506827]
大規模言語モデル(LLM)は、今日のアプリケーションでは必須であるが、推論手順は重要な計算資源を必要とする。
本稿では,多段階オンラインスケジューリング問題としてLLM推論最適化を定式化する。
我々は,アルゴリズム設計をガイドするトラクタブルなベンチマークを提供するために,流体力学近似を開発した。
論文 参考訳(メタデータ) (2025-04-15T16:00:21Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - ProPD: Dynamic Token Tree Pruning and Generation for LLM Parallel
Decoding [12.449023969197684]
ProPDは動的トークンツリーのプルーニングと生成に基づく効率的な並列デコードフレームワークである。
ProPD は既存の復号アルゴリズムを 1.1-3.2x で一貫的に上回っている。
論文 参考訳(メタデータ) (2024-02-21T02:51:07Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoTは並列デコーディングに基づくモデルに依存しないフレームワークである。
我々は、FastCoTが通常のアプローチと比較して、無視できる性能低下だけで、推論時間を20%近く削減できることを示します。
論文 参考訳(メタデータ) (2023-11-14T15:56:18Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
ニューラルネットワークの評価や自己回帰モデルからのサンプリングなどのフィードフォワード計算は、機械学習においてユビキタスである。
本稿では,非線形方程式の解法としてフィードフォワード計算の課題を定式化し,ジャコビ・ガウス・シーデル固定点法とハイブリッド法を用いて解を求める。
提案手法は, 並列化可能な繰り返し回数の削減(あるいは等値化)により, 元のフィードフォワード計算と全く同じ値が与えられることを保証し, 十分な並列化計算能力を付与する。
論文 参考訳(メタデータ) (2020-02-10T10:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。