論文の概要: A new dataset and comparison for multi-camera frame synthesis
- arxiv url: http://arxiv.org/abs/2508.09068v1
- Date: Tue, 12 Aug 2025 16:37:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 21:07:34.508651
- Title: A new dataset and comparison for multi-camera frame synthesis
- Title(参考訳): マルチカメラフレーム合成のための新しいデータセットと比較
- Authors: Conall Daly, Anil Kokaram,
- Abstract要約: 我々は、カスタムに構築された高密度リニアカメラアレイを用いて、新しいマルチカメラデータセットを開発する。
我々は,古典的・深層学習フレーム補間器をビュー・イン・ビュー・イン・ビューニングのためのビュー・シンセサイザー法と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many methods exist for frame synthesis in image sequences but can be broadly categorised into frame interpolation and view synthesis techniques. Fundamentally, both frame interpolation and view synthesis tackle the same task, interpolating a frame given surrounding frames in time or space. However, most frame interpolation datasets focus on temporal aspects with single cameras moving through time and space, while view synthesis datasets are typically biased toward stereoscopic depth estimation use cases. This makes direct comparison between view synthesis and frame interpolation methods challenging. In this paper, we develop a novel multi-camera dataset using a custom-built dense linear camera array to enable fair comparison between these approaches. We evaluate classical and deep learning frame interpolators against a view synthesis method (3D Gaussian Splatting) for the task of view in-betweening. Our results reveal that deep learning methods do not significantly outperform classical methods on real image data, with 3D Gaussian Splatting actually underperforming frame interpolators by as much as 3.5 dB PSNR. However, in synthetic scenes, the situation reverses -- 3D Gaussian Splatting outperforms frame interpolation algorithms by almost 5 dB PSNR at a 95% confidence level.
- Abstract(参考訳): 画像系列におけるフレーム合成には多くの方法が存在するが、広くフレーム補間とビュー合成技術に分類することができる。
基本的には、フレーム補間とビュー合成は同じタスクに取り組み、時間や空間において周囲のフレームを補間する。
しかしながら、ほとんどのフレーム補間データセットは、時間と空間を移動する単一カメラによる時間的側面に焦点を当て、ビュー合成データセットは通常、立体的深さ推定のユースケースに偏っている。
これにより、ビュー合成とフレーム補間法の直接比較が困難になる。
本稿では,これらの手法の公正な比較を可能にするために,専用に構築された高密度リニアカメラアレイを用いた新しいマルチカメラデータセットを開発する。
本研究では,古典的・深層学習フレーム補間器をビュー合成法(3Dガウス版)と比較した。
以上の結果から,3次元ガウススプラッティングは3.5dBのPSNRでフレーム補間性能が劣っていることがわかった。
しかし、合成シーンでは状況が逆転し、3Dガウス・スプティングはフレーム補間アルゴリズムを95%の信頼レベルで約5dBPSNRで上回っている。
関連論文リスト
- Multi-View Object Pose Refinement With Differentiable Renderer [22.040014384283378]
本稿では,合成データの学習方法の改善に焦点をあてた,新しい多視点6 DoFオブジェクトポーズ改善手法を提案する。
これはDPOD検出器に基づいており、各フレーム内のモデル頂点と画像画素との間の密度の高い2D-3D対応を生成する。
合成および実データに基づいて訓練された最先端の手法と比較して優れた性能を報告した。
論文 参考訳(メタデータ) (2022-07-06T17:02:22Z) - FILM: Frame Interpolation for Large Motion [20.04001872133824]
本稿では,2つの入力画像から複数の中間フレームを合成するフレームアルゴリズムを提案する。
提案手法は,Xiph大運動ベンチマークの最先端手法より優れている。
論文 参考訳(メタデータ) (2022-02-10T08:48:18Z) - Video Frame Interpolation without Temporal Priors [91.04877640089053]
ビデオフレームは、既存の中間フレームをビデオシーケンスで合成することを目的としている。
フレーム/秒(FPS)やフレーム露光時間といったビデオの時間的先行は、異なるカメラセンサーによって異なる場合がある。
我々は、より良い合成結果を得るために、新しい光フロー改善戦略を考案する。
論文 参考訳(メタデータ) (2021-12-02T12:13:56Z) - Asymmetric Bilateral Motion Estimation for Video Frame Interpolation [50.44508853885882]
非対称な左右運動推定(ABME)に基づく新しいビデオフレームアルゴリズムを提案する。
我々は左右対称運動場を予測してアンカーフレームを補間する。
アンカーフレームから入力フレームへの非対称な左右運動場を推定する。
第三に、非対称場を用いて入力フレームを後方にワープし、中間フレームを再構築する。
論文 参考訳(メタデータ) (2021-08-15T21:11:35Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
本稿では,合成法とフロー法の両方の利点を生かした,等価寄与法であるTime Lensを紹介する。
最先端のフレームベースおよびイベントベース手法よりもPSNRが最大5.21dB向上したことを示す。
論文 参考訳(メタデータ) (2021-06-14T10:33:47Z) - ARVo: Learning All-Range Volumetric Correspondence for Video Deblurring [92.40655035360729]
ビデオデブラリングモデルは連続フレームを利用して、カメラの揺動や物体の動きからぼやけを取り除く。
特徴空間におけるボケフレーム間の空間的対応を学習する新しい暗黙的手法を提案する。
提案手法は,新たに収集したビデオデブレーション用ハイフレームレート(1000fps)データセットとともに,広く採用されているDVDデータセット上で評価される。
論文 参考訳(メタデータ) (2021-03-07T04:33:13Z) - Street-view Panoramic Video Synthesis from a Single Satellite Image [92.26826861266784]
時間的および幾何学的に一貫したストリートビューパノラマビデオの両方を合成する新しい方法を提示する。
既存のクロスビュー合成アプローチは画像に重点を置いているが、そのような場合のビデオ合成はまだ十分な注目を集めていない。
論文 参考訳(メタデータ) (2020-12-11T20:22:38Z) - ALANET: Adaptive Latent Attention Network forJoint Video Deblurring and
Interpolation [38.52446103418748]
シャープな高フレームレート映像を合成する新しいアーキテクチャであるAdaptive Latent Attention Network (ALANET)を導入する。
我々は,各フレームに最適化された表現を生成するために,潜在空間内の連続するフレーム間で自己アテンションと相互アテンションのモジュールを組み合わせる。
本手法は, より困難な問題に取り組みながら, 様々な最先端手法に対して良好に機能する。
論文 参考訳(メタデータ) (2020-08-31T21:11:53Z) - Efficient Semantic Video Segmentation with Per-frame Inference [117.97423110566963]
本研究では,フレームごとの効率的なセマンティックビデオセグメンテーションを推論プロセス中に処理する。
そこで我々は,コンパクトモデルと大規模モデルのパフォーマンスギャップを狭めるために,新しい知識蒸留法を設計した。
論文 参考訳(メタデータ) (2020-02-26T12:24:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。