論文の概要: impuTMAE: Multi-modal Transformer with Masked Pre-training for Missing Modalities Imputation in Cancer Survival Prediction
- arxiv url: http://arxiv.org/abs/2508.09195v1
- Date: Fri, 08 Aug 2025 10:01:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-14 20:42:00.60244
- Title: impuTMAE: Multi-modal Transformer with Masked Pre-training for Missing Modalities Imputation in Cancer Survival Prediction
- Title(参考訳): impuTMAE:癌生存予測における乳腺障害に対する仮設プレトレーニング付きマルチモーダルトランス
- Authors: Maria Boyko, Aleksandra Beliaeva, Dmitriy Kornilov, Alexander Bernstein, Maxim Sharaev,
- Abstract要約: 我々は,効率的なマルチモーダル事前学習戦略を備えた新しいトランスフォーマーに基づくエンドツーエンドアプローチである impuTMAE を紹介する。
マスクされたパッチを再構築することで、モダリティの欠如を同時に示唆しながら、モダリティ間の相互作用とモダリティ内相互作用を学習する。
本モデルは,TGA-GBM/LGGとBraTSデータセットを用いたグリオーマ生存予測のために,異種不完全データに基づいて事前訓練を行った。
- 参考スコア(独自算出の注目度): 75.43342771863837
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The use of diverse modalities, such as omics, medical images, and clinical data can not only improve the performance of prognostic models but also deepen an understanding of disease mechanisms and facilitate the development of novel treatment approaches. However, medical data are complex, often incomplete, and contains missing modalities, making effective handling its crucial for training multimodal models. We introduce impuTMAE, a novel transformer-based end-to-end approach with an efficient multimodal pre-training strategy. It learns inter- and intra-modal interactions while simultaneously imputing missing modalities by reconstructing masked patches. Our model is pre-trained on heterogeneous, incomplete data and fine-tuned for glioma survival prediction using TCGA-GBM/LGG and BraTS datasets, integrating five modalities: genetic (DNAm, RNA-seq), imaging (MRI, WSI), and clinical data. By addressing missing data during pre-training and enabling efficient resource utilization, impuTMAE surpasses prior multimodal approaches, achieving state-of-the-art performance in glioma patient survival prediction. Our code is available at https://github.com/maryjis/mtcp
- Abstract(参考訳): オミクス、医用画像、臨床データなどの多彩なモダリティの使用は、予後モデルの性能を向上させるだけでなく、疾患のメカニズムの理解を深め、新しい治療法の開発を促進する。
しかし、医療データは複雑で、しばしば不完全であり、モダリティが欠如しているため、マルチモーダルモデルのトレーニングにおいて効果的なハンドリングが重要である。
我々は,効率的なマルチモーダル事前学習戦略を備えた新しいトランスフォーマーに基づくエンドツーエンドアプローチである impuTMAE を紹介する。
マスクされたパッチを再構築することで、モダリティの欠如を同時に示唆しながら、モダリティ間の相互作用とモダリティ内相互作用を学習する。
本モデルは,TGA-GBM/LGGおよびBraTSデータセットを用いたグリオーマ生存予測のために,異種不完全データの事前トレーニングを行い,遺伝子(DNAm,RNA-seq),画像(MRI,WSI)と臨床データの統合を行った。
事前トレーニング中に欠落したデータに対処し、効率的な資源利用を可能にすることにより、 impuTMAEは、従来のマルチモーダルアプローチを超越し、グリオーマ患者の生存予測における最先端のパフォーマンスを達成する。
私たちのコードはhttps://github.com/maryjis/mtcpで利用可能です。
関連論文リスト
- Cross-Modality Masked Learning for Survival Prediction in ICI Treated NSCLC Patients [8.798544846026676]
免疫療法を施行した非小細胞肺癌(NSCLC)患者の大規模データセットについて報告する。
本稿では,生存予測の精度向上を目的としたマルチモーダル機能融合のための新しいフレームワークを提案する。
提案手法は,NSCLCサバイバル予測のためのマルチモーダル統合において,既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2025-07-09T16:19:31Z) - Multimodal Masked Autoencoder Pre-training for 3D MRI-Based Brain Tumor Analysis with Missing Modalities [0.0]
BM-MAEはマルチモーダルMRIデータに適したマスク付き画像モデリング事前学習戦略である。
利用可能なモダリティの組み合わせにシームレスに適応し、モダリティ内情報とモダリティ間情報の両方をキャプチャするリッチな表現を抽出する。
欠落したモダリティを迅速かつ効率的に再構築し、その実用的価値を強調します。
論文 参考訳(メタデータ) (2025-05-01T14:51:30Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival [8.403756148610269]
がん患者生存のマルチモーダル予測は、より包括的で正確なアプローチを提供する。
本稿では、畳み込みマスクエンコーダに基づく異種グラフ認識ネットワークであるSELECTORを紹介する。
本手法は,モダリティ欠落とモダリティ内情報確認の両事例において,最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-03-14T11:23:39Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
生存時間(OS)の早期かつ正確な予測は、脳腫瘍患者に対するより良い治療計画を得るのに役立つ。
既存の予測手法は、磁気共鳴(MR)ボリュームの局所的な病変領域における放射能特性に依存している。
我々は,マルチモーダルマルチチャネルネットワーク(M2Net)のエンドツーエンドOS時間予測モデルを提案する。
論文 参考訳(メタデータ) (2020-06-01T05:21:37Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。