論文の概要: FIDELIS: Blockchain-Enabled Protection Against Poisoning Attacks in Federated Learning
- arxiv url: http://arxiv.org/abs/2508.10042v1
- Date: Mon, 11 Aug 2025 22:12:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 22:24:48.043832
- Title: FIDELIS: Blockchain-Enabled Protection Against Poisoning Attacks in Federated Learning
- Title(参考訳): FIDELIS:フェデレートラーニングにおけるブロックチェーンによる攻撃に対する保護
- Authors: Jane Carney, Kushal Upreti, Gaby G. Dagher, Tim Andersen,
- Abstract要約: フェデレーション学習は、IoTデバイスのプライベートデータを使用するモデルの共同トレーニングを可能にすることによって、従来のディープラーニングを強化する。
クライアントのプライバシを保証するが、モデルのパフォーマンスと整合性を低下させるトレーニング中のデータ中毒攻撃の影響を受けやすい。
我々は、フェデレートラーニングにおける新しいブロックチェーン対応毒検出フレームワークであるSysを紹介する。
- 参考スコア(独自算出の注目度): 1.2499537119440243
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning enhances traditional deep learning by enabling the joint training of a model with the use of IoT device's private data. It ensures privacy for clients, but is susceptible to data poisoning attacks during training that degrade model performance and integrity. Current poisoning detection methods in federated learning lack a standardized detection method or take significant liberties with trust. In this paper, we present \Sys, a novel blockchain-enabled poison detection framework in federated learning. The framework decentralizes the role of the global server across participating clients. We introduce a judge model used to detect data poisoning in model updates. The judge model is produced by each client and verified to reach consensus on a single judge model. We implement our solution to show \Sys is robust against data poisoning attacks and the creation of our judge model is scalable.
- Abstract(参考訳): フェデレーション学習は、IoTデバイスのプライベートデータを使用するモデルの共同トレーニングを可能にすることによって、従来のディープラーニングを強化する。
クライアントのプライバシを保証するが、モデルのパフォーマンスと整合性を低下させるトレーニング中のデータ中毒攻撃の影響を受けやすい。
現在のフェデレート学習における中毒検出法には、標準化された検出方法が欠如している。
本稿では,フェデレート学習における新しいブロックチェーン対応毒検出フレームワークである \Sys を提案する。
このフレームワークはグローバルサーバの役割を、参加するクライアント間で分散化する。
モデル更新におけるデータ中毒の検出に用いる判定モデルを提案する。
判定モデルは各クライアントによって作成され、単一の判定モデルで合意に達することが検証される。
Sysはデータ中毒攻撃に対して堅牢であり、審査モデルの作成はスケーラブルであることを示すソリューションを実装しました。
関連論文リスト
- Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning(FL)は、分散機械学習ダイアグラムで、複数のクライアントがプライベートなローカルデータを共有せずに、グローバルモデルを協調的にトレーニングすることができる。
FLシステムは、データ中毒やモデル中毒を通じて悪意のあるクライアントで起こっている攻撃に対して脆弱である。
既存の防御方法は通常、特定の種類の中毒を緩和することに焦点を当てており、しばしば目に見えないタイプの攻撃に対して効果がない。
論文 参考訳(メタデータ) (2024-08-05T20:27:45Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuardは、クライアント側のトレーニングデータ分散推論攻撃に対する防御を目的とした、新しいビザンチン・ロバスト集約ルールである。
実験の結果,我々の防衛機構はクライアント側のトレーニングデータ分布推定攻撃に対する防御に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-03-05T17:41:35Z) - FLoW3 -- Web3 Empowered Federated Learning [0.0]
フェデレートラーニングは、データポジショニング、モデルポジショニング、中間攻撃における人など、さまざまな種類の攻撃に影響を受けやすい。
バリデーションはNoverety DetectionとSnowballプロトコルを使用してコンセンサスによって行われる。
システムは、スマートコントラクト開発のためのpythonとFoundryの実装によって実現される。
論文 参考訳(メタデータ) (2023-12-09T04:05:07Z) - FedBayes: A Zero-Trust Federated Learning Aggregation to Defend Against
Adversarial Attacks [1.689369173057502]
フェデレートラーニング(Federated Learning)は、クライアントデータに直接アクセスすることなく、マシンラーニングモデルをトレーニングする分散メソッドを開発した。
悪意のあるクライアントは、グローバルモデルを破壊し、フェデレーション内のすべてのクライアントのパフォーマンスを低下させることができる。
新たなアグリゲーション手法であるFedBayesは、クライアントのモデル重みの確率を計算することにより、悪意のあるクライアントの効果を緩和する。
論文 参考訳(メタデータ) (2023-12-04T21:37:50Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
ブロックチェーンと分散台帳技術に基づくセキュアで信頼性の高いフェデレーション学習システムを提案する。
本システムでは,オンチェーン型スマートコントラクトを利用したピアツーピア投票機構と報酬アンドスラッシュ機構を組み込んで,悪意ある行動の検出と検出を行う。
論文 参考訳(メタデータ) (2023-07-02T11:23:33Z) - MPAF: Model Poisoning Attacks to Federated Learning based on Fake
Clients [51.973224448076614]
本稿では,MPAF と呼ばれる Fake クライアントをベースとした最初のモデルポジショニング攻撃を提案する。
MPAFは、たとえ古典的な防御とノルムクリッピングが採用されたとしても、グローバルモデルのテスト精度を著しく低下させることができる。
論文 参考訳(メタデータ) (2022-03-16T14:59:40Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。