論文の概要: LeanRAG: Knowledge-Graph-Based Generation with Semantic Aggregation and Hierarchical Retrieval
- arxiv url: http://arxiv.org/abs/2508.10391v2
- Date: Mon, 18 Aug 2025 03:28:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 12:43:44.909012
- Title: LeanRAG: Knowledge-Graph-Based Generation with Semantic Aggregation and Hierarchical Retrieval
- Title(参考訳): LeanRAG: セマンティック集約と階層的検索を備えた知識グラフベースの生成
- Authors: Yaoze Zhang, Rong Wu, Pinlong Cai, Xiaoman Wang, Guohang Yan, Song Mao, Ding Wang, Botian Shi,
- Abstract要約: LeanRAGは知識集約と検索戦略を組み合わせたフレームワークです。
グラフ上のパス検索に関連するかなりのオーバーヘッドを軽減し、冗長な情報検索を最小限にする。
- 参考スコア(独自算出の注目度): 10.566901995776025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) plays a crucial role in grounding Large Language Models by leveraging external knowledge, whereas the effectiveness is often compromised by the retrieval of contextually flawed or incomplete information. To address this, knowledge graph-based RAG methods have evolved towards hierarchical structures, organizing knowledge into multi-level summaries. However, these approaches still suffer from two critical, unaddressed challenges: high-level conceptual summaries exist as disconnected ``semantic islands'', lacking the explicit relations needed for cross-community reasoning; and the retrieval process itself remains structurally unaware, often degenerating into an inefficient flat search that fails to exploit the graph's rich topology. To overcome these limitations, we introduce LeanRAG, a framework that features a deeply collaborative design combining knowledge aggregation and retrieval strategies. LeanRAG first employs a novel semantic aggregation algorithm that forms entity clusters and constructs new explicit relations among aggregation-level summaries, creating a fully navigable semantic network. Then, a bottom-up, structure-guided retrieval strategy anchors queries to the most relevant fine-grained entities and then systematically traverses the graph's semantic pathways to gather concise yet contextually comprehensive evidence sets. The LeanRAG can mitigate the substantial overhead associated with path retrieval on graphs and minimizes redundant information retrieval. Extensive experiments on four challenging QA benchmarks with different domains demonstrate that LeanRAG significantly outperforming existing methods in response quality while reducing 46\% retrieval redundancy. Code is available at: https://github.com/RaZzzyz/LeanRAG
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、外部知識を活用して大規模言語モデルを構築する上で重要な役割を担っているが、その効果は文脈的に欠陥のある情報や不完全な情報の検索によってしばしば損なわれる。
これを解決するために、知識グラフに基づくRAG手法は階層構造へと進化し、知識を多段階の要約にまとめている。
しかし、これらのアプローチは依然として2つの重要な未解決の課題に悩まされている: 高レベルの概念的要約は非連結な 'semantic Islands''' として存在し、コミュニティ間の推論に必要な明示的な関係が欠如している;検索プロセス自体は構造的にも不明であり、しばしばグラフのリッチなトポロジーを活用できない非効率的な平坦な探索へと退化する。
このような制限を克服するために,知識集約と検索戦略を組み合わせた,深く協調的な設計を特徴とするフレームワークであるLeanRAGを紹介します。
LeanRAGはまず、エンティティクラスタを形成する新しいセマンティックアグリゲーションアルゴリズムを使用し、アグリゲーションレベルのサマリ間の新しい明示的な関係を構築し、完全にナビゲート可能なセマンティックネットワークを作成する。
そして、ボトムアップで構造化誘導された検索戦略は、クエリを最も関係の細かいエンティティにアンカーし、その後、グラフのセマンティックパスを体系的に横切り、簡潔で文脈的に包括的なエビデンス集合を収集する。
LeanRAGは、グラフ上のパス検索に関連するかなりのオーバーヘッドを軽減し、冗長な情報検索を最小限にする。
異なるドメインを持つ4つの挑戦的QAベンチマークの大規模な実験により、LeanRAGは既存の手法を46倍の検索冗長性を低下させ、応答品質で大幅に上回った。
コードは、https://github.com/RaZzzyz/LeanRAGで入手できる。
関連論文リスト
- Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) は、外部知識を注入することによって、Large Language Models (LLM) の事実性を高める。
逆に、純粋に推論指向のアプローチは、しばしば幻覚的あるいは誤った事実を必要とする。
この調査は両鎖を統一的推論-検索の観点から合成する。
論文 参考訳(メタデータ) (2025-07-13T03:29:41Z) - Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval [7.542076325904203]
Retrieval-Augmented Generation (RAG) は、しばしばグラフ構造化データから外部情報を統合することで制限に対処する。
本稿では,マルチパーティグラフインデックスとクエリ駆動反復検索戦略を導入した新しいアプローチであるClue-RAGを提案する。
3つのQAベンチマークの実験により、Clue-RAGは最先端のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2025-07-11T09:36:45Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
大規模言語モデル(LLM)は、様々な領域にわたって強い帰納的推論能力を示している。
既存のRAGパイプラインのほとんどは非構造化テキストに依存しており、解釈可能性と構造化推論を制限する。
近年,知識グラフ解答のための知識グラフとLLMの統合について検討している。
KGQAにおける効率的なグラフ検索のための新しいフレームワークであるRAPLを提案する。
論文 参考訳(メタデータ) (2025-06-11T12:03:52Z) - Respecting Temporal-Causal Consistency: Entity-Event Knowledge Graphs for Retrieval-Augmented Generation [69.45495166424642]
我々は,物語文書における時間的,因果的,文字的整合性を理解するために,頑健で差別的なQAベンチマークを開発する。
次に、バイナリマッピングでリンクされたエンティティとイベントのサブグラフを分離したまま保持するデュアルグラフフレームワークであるEntity-Event RAG(E2RAG)を紹介します。
ChronoQA全体で、我々のアプローチは最先端の非構造化およびKGベースのRAGベースラインよりも優れており、因果一貫性クエリや文字整合性クエリが顕著である。
論文 参考訳(メタデータ) (2025-06-06T10:07:21Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚や時代遅れの情報といった問題に苦戦している。
Retrieval-augmented Generation (RAG) は、情報検索システム(IR)を用いて、外部知識のLLM出力を基底にすることで、これらの問題に対処する。
本稿では、検索後句における新しい推論誘導二重アライメントフレームワークであるAlign-GRAGを提案する。
論文 参考訳(メタデータ) (2025-05-22T05:15:27Z) - Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning [18.96570718233786]
SPLIT-RAGは、質問駆動セマンティックグラフ分割と協調サブグラフ検索による制限に対処するマルチエージェントRAGフレームワークである。
革新的なフレームワークは、まずリンク情報のセマンティック分割を作成し、次にタイプ特化知識ベースを使用してマルチエージェントRAGを実現する。
属性対応グラフセグメンテーションは、知識グラフを意味的に一貫性のあるサブグラフに分割し、サブグラフが異なるクエリタイプと整合することを保証する。
階層的なマージモジュールは、論理的検証を通じて、部分グラフ由来の解答間の矛盾を解消する。
論文 参考訳(メタデータ) (2025-05-20T06:44:34Z) - ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation [16.204046295248546]
Retrieval-Augmented Generation (RAG) は、外部知識を大規模言語モデルに統合するのに有効であることが証明されている。
我々は、Attributed Community-based Hierarchical RAG (ArchRAG)と呼ばれる新しいグラフベースのRAGアプローチを導入する。
属性付きコミュニティのための新しい階層型インデックス構造を構築し,効果的なオンライン検索手法を開発した。
論文 参考訳(メタデータ) (2025-02-14T03:28:36Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。