論文の概要: iWatchRoad: Scalable Detection and Geospatial Visualization of Potholes for Smart Cities
- arxiv url: http://arxiv.org/abs/2508.10945v1
- Date: Wed, 13 Aug 2025 15:26:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:23.600094
- Title: iWatchRoad: Scalable Detection and Geospatial Visualization of Potholes for Smart Cities
- Title(参考訳): iWatchRoad: スマートシティ向けポットホールのスケーラブル検出と地理空間可視化
- Authors: Rishi Raj Sahoo, Surbhi Saswati Mohanty, Subhankar Mishra,
- Abstract要約: 我々は,自動ポットホール検出,GPSタグ付け,リアルタイムマッピングを行うiWatchRoadというエンドツーエンドシステムを提案する。
我々は、様々な道路タイプ、照明条件、気象シナリオにまたがる7,000フレーム以上のデータセットをキュレートした。
タイムスタンプはGPSログと同期して検出されたポットホールをジオタグする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Potholes on the roads are a serious hazard and maintenance burden. This poses a significant threat to road safety and vehicle longevity, especially on the diverse and under-maintained roads of India. In this paper, we present a complete end-to-end system called iWatchRoad for automated pothole detection, Global Positioning System (GPS) tagging, and real time mapping using OpenStreetMap (OSM). We curated a large, self-annotated dataset of over 7,000 frames captured across various road types, lighting conditions, and weather scenarios unique to Indian environments, leveraging dashcam footage. This dataset is used to fine-tune, Ultralytics You Only Look Once (YOLO) model to perform real time pothole detection, while a custom Optical Character Recognition (OCR) module was employed to extract timestamps directly from video frames. The timestamps are synchronized with GPS logs to geotag each detected potholes accurately. The processed data includes the potholes' details and frames as metadata is stored in a database and visualized via a user friendly web interface using OSM. iWatchRoad not only improves detection accuracy under challenging conditions but also provides government compatible outputs for road assessment and maintenance planning through the metadata visible on the website. Our solution is cost effective, hardware efficient, and scalable, offering a practical tool for urban and rural road management in developing regions, making the system automated. iWatchRoad is available at https://smlab.niser.ac.in/project/iwatchroad
- Abstract(参考訳): 道路上の穴は深刻な危険とメンテナンスの負担である。
これは、特にインドの多様で保守不足の道路において、道路の安全と車両の長寿に重大な脅威をもたらす。
本稿では,自動ポットホール検出,GPSタグ付け,OpenStreetMap(OSM)を用いたリアルタイムマッピングのための,iWatchRoadと呼ばれるエンドツーエンドシステムを提案する。
私たちは、さまざまな道路タイプ、照明条件、インドの環境特有の気象シナリオにまたがって、7000フレームを超える大規模で自己注釈付きデータセットをキュレートし、ダッシュカムの映像を活用しました。
このデータセットは、リアルタイムポットホール検出を行うために、Ultralytics You Only Look Once (YOLO)モデルを微調整するために使用され、ビデオフレームから直接タイムスタンプを抽出するために、独自の光文字認識(OCR)モジュールが使用された。
タイムスタンプはGPSログと同期し、検出されたポットホールを正確にジオタグする。
処理されたデータは、メタデータがデータベースに格納され、OSMを使用してユーザフレンドリーなWebインターフェースを介して視覚化されるときに、ポットホールの詳細とフレームを含む。
iWatchRoadは、困難な状況下で検出精度を向上するだけでなく、Webサイトにあるメタデータを通して、道路評価とメンテナンス計画のための政府互換のアウトプットも提供する。
我々のソリューションはコスト効率が高く、ハードウェア効率が高く、スケーラブルで、発展途上国の都市や農村の道路管理に実用的なツールを提供し、システムを自動化します。
iWatchRoadはhttps://smlab.niser.ac.in/project/iwatchroadで利用可能である。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormerは、GPSデータ、環境コンテキスト、運転者の視野を組み合わせた新しいエゴ軌道予測ネットワークである。
データ不足に対処し、多様性を高めるために、同期運転場と視線データに富んだ都市運転シナリオのデータセットであるGEMを導入する。
論文 参考訳(メタデータ) (2023-12-13T23:06:30Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
道路表面の再構築は、車両の走行計画と制御システムの解析と予測を促進するのに役立つ。
我々は,様々な運転条件下で,特定のプラットフォームで収集した実世界,高解像度,高精度のデータセットであるRoad Surface Reconstructionデータセットを紹介した。
約16,000対のステレオ画像、原点雲、地中深度・不均等地図を含む一般的な道路形態を網羅している。
論文 参考訳(メタデータ) (2023-10-03T17:59:32Z) - Prior Based Online Lane Graph Extraction from Single Onboard Camera
Image [133.68032636906133]
単眼カメラ画像からレーングラフをオンラインに推定する。
前者は、トランスフォーマーベースのWasserstein Autoencoderを通じてデータセットから抽出される。
オートエンコーダは、最初のレーングラフ推定を強化するために使用される。
論文 参考訳(メタデータ) (2023-07-25T08:58:26Z) - Ithaca365: Dataset and Driving Perception under Repeated and Challenging
Weather Conditions [0.0]
我々は、新しいデータ収集プロセスを通じて、堅牢な自律運転を可能にする新しいデータセットを提案する。
データセットには、高精度GPS/INSとともに、カメラとLiDARセンサーからの画像と点雲が含まれている。
道路・オブジェクトのアモーダルセグメンテーションにおけるベースラインの性能を解析することにより,このデータセットの特異性を実証する。
論文 参考訳(メタデータ) (2022-08-01T22:55:32Z) - Haul Road Mapping from GPS Traces [0.0]
本稿では,道路網の正確な表現を,現場で運用されているトラックから取得したGPSデータを用いて自動的に導き出す可能性について検討する。
全ての試験アルゴリズムで見られる欠点に基づいて, 地雷の現場に典型的な工芸品の道路地図を幾何学的に解析するポストプロセッシング・ステップが開発された。
論文 参考訳(メタデータ) (2022-06-27T04:35:06Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
我々は、ビジョンベース検出器のこの重要な問題を露呈する、CODAという挑戦的なデータセットを導入する。
大規模自動運転データセットで訓練された標準物体検出器の性能は、mARの12.8%以下に著しく低下した。
我々は最先端のオープンワールドオブジェクト検出器を実験し、CODAの新しいオブジェクトを確実に識別できないことを発見した。
論文 参考訳(メタデータ) (2022-03-15T08:32:56Z) - Real-Time Pothole Detection Using Deep Learning [0.0]
本研究は,ポットホールを検出するために,異なるディープラーニングアーキテクチャをデプロイし,テストした。
トレーニングに使用された画像は、車のフロントガラスに取り付けられた携帯電話で収集された。
このシステムは、カメラから100メートル離れた範囲から穴を検出できた。
論文 参考訳(メタデータ) (2021-07-13T19:36:34Z) - Learning to Automatically Catch Potholes in Worldwide Road Scene Images [0.0]
実世界の道路シーンの画像からポットホール検出の課題に取り組んだ。
私たちはpotholeアノテーションで画像の大規模なデータセットを構築しました。
次に,高速なr-cnnとssd深層ニューラルネットワークに基づく4種類の物体検出モデルを微調整した。
論文 参考訳(メタデータ) (2021-05-17T16:10:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。