論文の概要: A Global Dataset of Location Data Integrity-Assessed Reforestation Efforts
- arxiv url: http://arxiv.org/abs/2508.11349v1
- Date: Fri, 15 Aug 2025 09:28:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:23.836166
- Title: A Global Dataset of Location Data Integrity-Assessed Reforestation Efforts
- Title(参考訳): 位置データ統合を考慮した森林再生活動のグローバルデータセット
- Authors: Angela John, Selvyn Allotey, Till Koebe, Alexandra Tyukavina, Ingmar Weber,
- Abstract要約: 本研究は, 一次情報(メタ情報)から収集したグローバルな植林と再植林の取り組みに関するデータセットを提示する。
このデータセットは33年にわたる45,628件のプロジェクトから1,289,068件の植林地をカバーしている。
地上基準植林地の約79%は、LDIS指標10のうち少なくとも1つで故障した。
- 参考スコア(独自算出の注目度): 40.17692290400862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Afforestation and reforestation are popular strategies for mitigating climate change by enhancing carbon sequestration. However, the effectiveness of these efforts is often self-reported by project developers, or certified through processes with limited external validation. This leads to concerns about data reliability and project integrity. In response to increasing scrutiny of voluntary carbon markets, this study presents a dataset on global afforestation and reforestation efforts compiled from primary (meta-)information and augmented with time-series satellite imagery and other secondary data. Our dataset covers 1,289,068 planting sites from 45,628 projects spanning 33 years. Since any remote sensing-based validation effort relies on the integrity of a planting site's geographic boundary, this dataset introduces a standardized assessment of the provided site-level location information, which we summarize in one easy-to-communicate key indicator: LDIS -- the Location Data Integrity Score. We find that approximately 79\% of the georeferenced planting sites monitored fail on at least 1 out of 10 LDIS indicators, while 15\% of the monitored projects lack machine-readable georeferenced data in the first place. In addition to enhancing accountability in the voluntary carbon market, the presented dataset also holds value as training data for e.g. computer vision-related tasks with millions of linked Sentinel-2 and Planetscope satellite images.
- Abstract(参考訳): 森林伐採と再植林は、炭素の隔離を強化することで気候変動を緩和するための一般的な戦略である。
しかしながら、これらの取り組みの有効性は、しばしばプロジェクト開発者によって自己報告されるか、または外部の検証に制限のあるプロセスを通じて認定される。
これはデータの信頼性とプロジェクトの整合性に関する懸念につながります。
本研究は, 自発的な炭素市場に対する調査の増加に対応するため, 時系列衛星画像などの二次データを用いて, 一次情報(メタ情報)から収集したグローバルな植林と再植林の取り組みに関するデータセットを提示する。
このデータセットは33年にわたる45,628件のプロジェクトから1,289,068件の植林地をカバーしている。
リモートセンシングベースのバリデーションの取り組みは、プランティングサイトの地理的境界の整合性に依存するため、このデータセットは、提供されたサイトレベルの位置情報の標準化された評価を導入する。
調査対象地の約79 %はLDIS 10 の指標のうち少なくとも1 %は失敗し,15 % はマシン可読なジオレファレンスデータを持っていないことがわかった。
自発的な炭素市場における説明責任の向上に加えて、提示されたデータセットは、数百万のSentinel-2とPlanetscope衛星画像をリンクしたegコンピュータビジョン関連タスクのトレーニングデータとしての価値も保持している。
関連論文リスト
- HyBiomass: Global Hyperspectral Imagery Benchmark Dataset for Evaluating Geospatial Foundation Models in Forest Aboveground Biomass Estimation [1.0408909053766147]
本研究では,森林表層バイオマス(AGB)推定のためのグローバル分散ベンチマークデータセットを提案する。
このベンチマークデータセットは、環境マッピング・分析プログラム(EnMAP)衛星からのHSIと、AGB密度推定の予測を組み合わせたものである。
このデータセットを用いた実験結果から,評価されたGeo-FMがベースラインU-Netの性能を上回り得るか,場合によっては超えることを示した。
論文 参考訳(メタデータ) (2025-06-12T21:29:20Z) - Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework [59.42946541163632]
3つの重要なコンポーネントを持つ包括的位置決めフレームワークを導入する。
大規模データセットGeoComp、新しい推論手法GeoCoT、評価指標GeoEval。
また,GeoCoTは解釈可能性を高めつつ,位置情報の精度を最大25%向上させることを示した。
論文 参考訳(メタデータ) (2025-02-19T14:21:25Z) - AGBD: A Global-scale Biomass Dataset [18.976975819550173]
衛星画像から地上バイオマスを推定するための既存のデータセットは限られている。
このデータセットは、GEDIミッションからのAGB参照データとSentinel-2とPALSAR-2の画像のデータを組み合わせる。
これには、密集した天蓋の高さマップ、標高マップ、土地被覆分類マップなど、事前処理された高水準の特徴が含まれている。
単一の行のコードで簡単にアクセスでき、グローバルなAGB推定への取り組みの確固たる基盤を提供する。
論文 参考訳(メタデータ) (2024-06-07T13:34:17Z) - Planted: a dataset for planted forest identification from multi-satellite time series [23.822292894884427]
森林プランテーションの認識のための5つの公共衛星のデータと,世界中の植林木種のデータからなるデータセットについて述べる。
PlantDという名前のデータセットには、41か国に分布する64種の木ラベルクラス(46属40種)の2M以上のサンプルが含まれている。
論文 参考訳(メタデータ) (2024-05-24T15:49:00Z) - Reuse out-of-year data to enhance land cover mappingvia feature disentanglement and contrastive learning [5.936030178022172]
土地利用/土地被覆(LULC)地図は、農業領域の管理、環境モニタリング、持続可能な意思決定を支援する上で重要な役割を果たしている。
新しい基底真理データを収集する必要があるため、以前に収集された参照データを完全に無視する。
本稿では,2つの異なる領域からのリモートセンシングと参照データを組み合わせたディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T07:00:20Z) - Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings [44.4879068879732]
本稿では,データアソシエーションにおけるあいまいさを解消するための完全なパイプラインを提案する。
その中核は、測定のエントロピーに応じて探索領域に適応する堅牢な自己調整データアソシエーションである。
ドイツ・カールスルーエ市周辺の都市・農村のシナリオを実データとして評価した。
論文 参考訳(メタデータ) (2022-07-28T12:29:39Z) - Detecting Deforestation from Sentinel-1 Data in the Absence of Reliable
Reference Data [3.222802562733787]
信頼性のある基準データがない場合に森林破壊検出のための新しい手法を提案し,評価する。
この方法は、研究領域で96.5%の変化検出感度(生産者の精度)を実現する。
その結果, センチネル-1のデータは, 地球規模の森林破壊モニタリングのタイムラインを前進させる可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-24T15:08:02Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
本稿では、LC分類と解析を行うために、新しい軽量(89kパラメータのみ)畳み込みニューラルネットワーク(ConvNet)を提案する。
本研究では,実世界のオープンデータソースを3つ組み合わせて13のチャネルを得る。
組込み分析は、いくつかのクラスにおいて限られたパフォーマンスを期待し、最も類似したクラスをグループ化する機会を与えてくれます。
論文 参考訳(メタデータ) (2022-01-26T14:58:51Z) - Farmland Parcel Delineation Using Spatio-temporal Convolutional Networks [77.63950365605845]
ファームパーセル・デライン化は、気候変動政策の開発と管理において重要なカダストラルデータを提供する。
このデータは、極端な気象災害に伴う損害後の補償を評価するための農業保険セクターにも有用である。
衛星画像の利用は、農場の区画整理作業を行うためのスケーラブルで費用対効果の高い方法である。
論文 参考訳(メタデータ) (2020-04-11T19:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。