論文の概要: Finite-Width Neural Tangent Kernels from Feynman Diagrams
- arxiv url: http://arxiv.org/abs/2508.11522v1
- Date: Fri, 15 Aug 2025 15:02:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:24.057322
- Title: Finite-Width Neural Tangent Kernels from Feynman Diagrams
- Title(参考訳): ファインマン図からの有限幅ニューラルタンジェントカーネル
- Authors: Max Guillen, Philipp Misof, Jan E. Gerken,
- Abstract要約: NTK統計量に有限幅補正を演算するためのファインマン図を導入する。
本研究では, ネットワークの安定性をNTKに拡張することで, 本フレームワークの実現可能性を示す。
- 参考スコア(独自算出の注目度): 0.5852077003870417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural tangent kernels (NTKs) are a powerful tool for analyzing deep, non-linear neural networks. In the infinite-width limit, NTKs can easily be computed for most common architectures, yielding full analytic control over the training dynamics. However, at infinite width, important properties of training such as NTK evolution or feature learning are absent. Nevertheless, finite width effects can be included by computing corrections to the Gaussian statistics at infinite width. We introduce Feynman diagrams for computing finite-width corrections to NTK statistics. These dramatically simplify the necessary algebraic manipulations and enable the computation of layer-wise recursive relations for arbitrary statistics involving preactivations, NTKs and certain higher-derivative tensors (dNTK and ddNTK) required to predict the training dynamics at leading order. We demonstrate the feasibility of our framework by extending stability results for deep networks from preactivations to NTKs and proving the absence of finite-width corrections for scale-invariant nonlinearities such as ReLU on the diagonal of the Gram matrix of the NTK. We validate our results with numerical experiments.
- Abstract(参考訳): ニューラル・タンジェント・カーネル(NTK)は、ディープ・非線形ニューラルネットワークを解析するための強力なツールである。
無限幅の極限では、NTKはほとんどの一般的なアーキテクチャで容易に計算でき、訓練力学の完全な解析制御が得られる。
しかし、無限の幅では、NTK進化や特徴学習のようなトレーニングの重要な性質は欠落している。
それでも、有限幅効果は、ガウス統計を無限幅で補正することで含めることができる。
NTK統計量に有限幅補正を演算するためのファインマン図を導入する。
これにより、必要な代数的操作を劇的に単純化し、事前アクティベーション、NTK、特定の高次テンソル(dNTK、ddNTK)を含む任意の統計量に対する階層的再帰関係の計算を可能にして、先行順序でのトレーニングダイナミクスを予測できる。
NTKのグラム行列の対角線上のReLUのようなスケール不変非線形性に対する有限幅補正が存在しないことを証明する。
数値実験による結果の検証を行う。
関連論文リスト
- Efficient kernel surrogates for neural network-based regression [0.8030359871216615]
ニューラルタンジェントカーネル(NTK)の効率的な近似である共役カーネル(CK)の性能について検討する。
CK性能がNTKよりもわずかに劣っていることを示し、特定の場合において、CK性能が優れていることを示す。
NTKの代わりにCKを使用するための理論的基盤を提供するだけでなく,DNNの精度を安価に向上するためのレシピを提案する。
論文 参考訳(メタデータ) (2023-10-28T06:41:47Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Efficient NTK using Dimensionality Reduction [5.025654873456756]
そこで本研究では,事前解析により得られた課題に対して,トレーニングや推論リソースのコストを低減しつつ,保証を得る方法について述べる。
より一般的には、高密度線形層を低複雑性因子化に置き換えた大きな幅ネットワークを解析する方法が提案されている。
論文 参考訳(メタデータ) (2022-10-10T16:11:03Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
勾配流(GF)を用いた広帯域ニューラルネットワーク(NN)の最適化について検討する。
入力次元がトレーニングセットのサイズ以下である場合、トレーニング損失はGFの下での線形速度で0に収束することを示す。
また、ニューラル・タンジェント・カーネル(NTK)システムとは異なり、我々の多層モデルは特徴学習を示し、NTKモデルよりも優れた一般化性能が得られることを実証的に示す。
論文 参考訳(メタデータ) (2022-04-22T15:56:43Z) - Scaling Neural Tangent Kernels via Sketching and Random Features [53.57615759435126]
最近の研究報告では、NTKレグレッションは、小規模データセットでトレーニングされた有限範囲のニューラルネットワークより優れている。
我々は、アークコサインカーネルの拡張をスケッチして、NTKの近距離入力スパーシティ時間近似アルゴリズムを設計する。
CNTKの特徴をトレーニングした線形回帰器が,CIFAR-10データセット上での正確なCNTKの精度と150倍の高速化を実現していることを示す。
論文 参考訳(メタデータ) (2021-06-15T04:44:52Z) - Weighted Neural Tangent Kernel: A Generalized and Improved
Network-Induced Kernel [20.84988773171639]
Neural Tangent Kernel(NTK)は、勾配降下によって訓練された過剰パラメーターニューラルネットワーク(NN)の進化を記述することで、近年、激しい研究を惹きつけている。
Weighted Neural Tangent Kernel (WNTK) は、一般化された改良されたツールであり、異なる勾配の下でパラメータ化されたNNのトレーニングダイナミクスをキャプチャすることができる。
提案する重み更新アルゴリズムでは,実験値と解析値の両方が,数値実験において対応するntkを上回っている。
論文 参考訳(メタデータ) (2021-03-22T03:16:20Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
カーネルメソッドは、完全に接続された有限幅ネットワークより優れている。
中心とアンサンブルの有限ネットワークは後続のばらつきを減らした。
重みの減衰と大きな学習率の使用は、有限ネットワークと無限ネットワークの対応を破る。
論文 参考訳(メタデータ) (2020-07-31T01:57:47Z) - When and why PINNs fail to train: A neural tangent kernel perspective [2.1485350418225244]
PINNのニューラルタンジェントカーネル(NTK)を導出し、適切な条件下では、無限幅極限でのトレーニング中に一定となる決定論的カーネルに収束することを示す。
学習誤差の総和に寄与する損失成分の収束率に顕著な差があることが判明した。
本研究では,NTKの固有値を用いて学習誤差の収束率を適応的に調整する勾配降下アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-28T23:44:56Z) - On Random Kernels of Residual Architectures [93.94469470368988]
ResNets と DenseNets のニューラルタンジェントカーネル (NTK) に対して有限幅および深さ補正を導出する。
その結果,ResNetsでは,深さと幅が同時に無限大となるとNTKへの収束が生じる可能性が示唆された。
しかし、DenseNetsでは、NTKの幅が無限大になる傾向があるため、その限界への収束が保証されている。
論文 参考訳(メタデータ) (2020-01-28T16:47:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。