論文の概要: In vivo 3D ultrasound computed tomography of musculoskeletal tissues with generative neural physics
- arxiv url: http://arxiv.org/abs/2508.12226v1
- Date: Sun, 17 Aug 2025 03:46:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:10.62462
- Title: In vivo 3D ultrasound computed tomography of musculoskeletal tissues with generative neural physics
- Title(参考訳): In vivo 3D CTによる筋骨格組織の計測と生成神経物理
- Authors: Zhijun Zeng, Youjia Zheng, Chang Su, Qianhang Wu, Hao Hu, Zeyuan Dong, Shan Gao, Yang Lv, Rui Tang, Ligang Cui, Zhiyong Hou, Weijun Lin, Zuoqiang Shi, Yubing Li, He Sun,
- Abstract要約: Ultrasound Computed Tomography (USCT) は、放射線のない高分解能のモダリティであるが、筋骨格撮影に限られている。
本稿では,高速かつ高忠実な3DUSCTのための生成ネットワークと物理インフォームドニューラルネットワークを結合した生成型ニューラルネットワークフレームワークを提案する。
- 参考スコア(独自算出の注目度): 13.146246255552544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrasound computed tomography (USCT) is a radiation-free, high-resolution modality but remains limited for musculoskeletal imaging due to conventional ray-based reconstructions that neglect strong scattering. We propose a generative neural physics framework that couples generative networks with physics-informed neural simulation for fast, high-fidelity 3D USCT. By learning a compact surrogate of ultrasonic wave propagation from only dozens of cross-modality images, our method merges the accuracy of wave modeling with the efficiency and stability of deep learning. This enables accurate quantitative imaging of in vivo musculoskeletal tissues, producing spatial maps of acoustic properties beyond reflection-mode images. On synthetic and in vivo data (breast, arm, leg), we reconstruct 3D maps of tissue parameters in under ten minutes, with sensitivity to biomechanical properties in muscle and bone and resolution comparable to MRI. By overcoming computational bottlenecks in strongly scattering regimes, this approach advances USCT toward routine clinical assessment of musculoskeletal disease.
- Abstract(参考訳): Ultrasound Computed Tomography (USCT) は放射線のない高分解能モダリティであるが, 強い散乱を無視する従来のX線による再構成により, 筋骨格撮影に限られている。
本稿では,高速かつ高忠実な3DUSCTのための生成ネットワークと物理インフォームドニューラルネットワークを結合した生成型ニューラルネットワークフレームワークを提案する。
モーダリティ画像から超音波伝搬のコンパクトなサロゲートを学習することにより,ウェーブモデリングの精度と深層学習の効率と安定性を融合する。
これにより、生体内の筋肉骨格組織の正確な定量的イメージングが可能となり、反射モード画像を超えた音響特性の空間地図が作成できる。
人工および生体内データ(胸,腕,脚)では,10分以内で組織パラメータの3Dマップを再構成し,筋肉と骨の生体力学的特性とMRIと同等の分解能に敏感に反応した。
強い散乱状態における計算的ボトルネックを克服することにより,USCTは筋骨格疾患の定期的な臨床評価に向けて前進する。
関連論文リスト
- 3D Wavelet Latent Diffusion Model for Whole-Body MR-to-CT Modality Translation [13.252652406393205]
既存の全身画像のためのMR-to-CT法では、生成したCT画像と入力したMR画像との空間的アライメントが低くなることが多い。
本稿では,これらの制約に対処する新しい3次元ウェーブレット遅延拡散モデル(3D-WLDM)を提案する。
エンコーダ・デコーダアーキテクチャにWavelet Residual Moduleを組み込むことで,画像空間と潜伏空間をまたいだ微細な特徴の捕捉と再構築が促進される。
論文 参考訳(メタデータ) (2025-07-14T06:17:05Z) - ZECO: ZeroFusion Guided 3D MRI Conditional Generation [11.645873358288648]
ZECOはZeroFusionでガイドされた3D MRI条件生成フレームワークである。
対応する3Dセグメンテーションマスクを備えた高忠実度MRI画像の抽出、圧縮、生成を行う。
ZECOは、脳MRIデータセットの定量的および質的な評価において、最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2025-03-24T00:04:52Z) - MRI Reconstruction with Regularized 3D Diffusion Model (R3DM) [2.842800539489865]
正規化3次元拡散モデルと最適化手法を組み合わせた3次元MRI再構成法を提案する。
拡散に基づく事前処理を取り入れることで,画像品質の向上,ノイズの低減,3次元MRI再構成の全体的な忠実度の向上を実現した。
論文 参考訳(メタデータ) (2024-12-25T00:55:05Z) - TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography [3.1209855614927275]
従来の解析的・定性的なCT再構成アルゴリズムは数百の角データサンプリングを必要とする。
我々は,高品質な3Dボリュームを再構成するために,ユニークなX線輸送物理を取り入れた新しいTtomoGRAFフレームワークを開発した。
論文 参考訳(メタデータ) (2024-11-12T20:07:59Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
深層ニューラルネットワークは、アンサンプされたk空間データの再構成に応用され、再構成性能が改善されている。
本研究は,k空間サンプリング軌道を正規微分方程式(ODE)問題と考えることによって学習する新しい枠組みを提案する。
実験は、異なるシーケンスで取得された様々な生き残りデータセット(例えば、脳と膝の画像)で実施された。
論文 参考訳(メタデータ) (2022-04-05T20:28:42Z) - 4D iterative reconstruction of brain fMRI in the moving fetus [1.8492120771993543]
本手法の精度を実地臨床用fMRI胎児群で定量的に評価した。
その結果,従来の3D手法と比較して再現性の向上が見られた。
論文 参考訳(メタデータ) (2021-11-22T18:12:21Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
経時的に脳血流量の変化を追跡でき, ピアル表面に向かって伝播する自発性動脈拡張を同定できる。
この新たなイメージング機能は、機能的磁気共鳴イメージング(fMRI)を基盤とした血行動態応答関数を特徴付けるための有望なステップである。
論文 参考訳(メタデータ) (2020-01-14T22:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。