論文の概要: Temporal and Rotational Calibration for Event-Centric Multi-Sensor Systems
- arxiv url: http://arxiv.org/abs/2508.12564v1
- Date: Mon, 18 Aug 2025 01:53:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:10.863881
- Title: Temporal and Rotational Calibration for Event-Centric Multi-Sensor Systems
- Title(参考訳): イベント中心型マルチセンサシステムの時間・回転校正
- Authors: Jiayao Mai, Xiuyuan Lu, Kuan Dai, Shaojie Shen, Yi Zhou,
- Abstract要約: イベントカメラは画素レベルの明るさ変化に応じて非同期信号を生成する。
イベント中心型マルチセンサシステムに適した動きに基づく時間・回転キャリブレーションフレームワークを提案する。
- 参考スコア(独自算出の注目度): 24.110040599070796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras generate asynchronous signals in response to pixel-level brightness changes, offering a sensing paradigm with theoretically microsecond-scale latency that can significantly enhance the performance of multi-sensor systems. Extrinsic calibration is a critical prerequisite for effective sensor fusion; however, the configuration that involves event cameras remains an understudied topic. In this paper, we propose a motion-based temporal and rotational calibration framework tailored for event-centric multi-sensor systems, eliminating the need for dedicated calibration targets. Our method uses as input the rotational motion estimates obtained from event cameras and other heterogeneous sensors, respectively. Different from conventional approaches that rely on event-to-frame conversion, our method efficiently estimates angular velocity from normal flow observations, which are derived from the spatio-temporal profile of event data. The overall calibration pipeline adopts a two-step approach: it first initializes the temporal offset and rotational extrinsics by exploiting kinematic correlations in the spirit of Canonical Correlation Analysis (CCA), and then refines both temporal and rotational parameters through a joint non-linear optimization using a continuous-time parametrization in SO(3). Extensive evaluations on both publicly available and self-collected datasets validate that the proposed method achieves calibration accuracy comparable to target-based methods, while exhibiting superior stability over purely CCA-based methods, and highlighting its precision, robustness and flexibility. To facilitate future research, our implementation will be made open-source. Code: https://github.com/NAIL-HNU/EvMultiCalib.
- Abstract(参考訳): イベントカメラは、画素レベルの明るさ変化に応答して非同期信号を生成し、理論上はマイクロ秒スケールのレイテンシを持つセンシングパラダイムを提供し、マルチセンサーシステムの性能を大幅に向上させる。
外部キャリブレーションは、効果的なセンサー融合のための重要な前提条件であるが、イベントカメラを含む構成は、まだ検討されていないトピックである。
本稿では,イベント中心型マルチセンサシステムに適した動きに基づく時間・回転キャリブレーションフレームワークを提案し,専用キャリブレーションターゲットの必要性を排除した。
本手法は,イベントカメラおよび他の異種センサから得られる回転運動推定値の入力として用いる。
イベント・ツー・フレーム変換に依存する従来の手法とは異なり,本手法は,イベントデータの時空間分布から得られる通常の流れ観測から角速度を効率的に推定する。
全体キャリブレーションパイプラインは、まず、正準相関解析(CCA)の精神における運動的相関を利用して、時間的オフセットと回転外乱を初期化し、SO(3)の連続時間パラメトリゼーションを用いて、時間的パラメータと回転パラメータの両方を非線形に最適化する。
提案手法は,CCA法に匹敵するキャリブレーション精度を達成し,CCA法よりも優れた安定性を示し,精度,堅牢性,柔軟性を強調した。
今後の研究を促進するため、我々の実装をオープンソースにします。
コード:https://github.com/NAIL-HNU/EvMultiCalib
関連論文リスト
- EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation [59.33052312107478]
イベントカメラは、シーン変化に対する連続的適応ピクセルレベル応答による3次元モーション推定の可能性を提供する。
本稿では,イベント誘導パラメトリック曲線を用いた一様軌道をモデル化するイベントベースフレームワークであるEMoveについて述べる。
動作表現には,事象誘導下での空間的特徴と時間的特徴を融合する密度認識適応機構を導入する。
最終3次元運動推定は、パラメトリック軌道、流れ、深度運動場の多時間サンプリングによって達成される。
論文 参考訳(メタデータ) (2025-03-14T13:15:54Z) - Universal Online Temporal Calibration for Optimization-based Visual-Inertial Navigation Systems [13.416013522770905]
最適化に基づくビジュアル慣性ナビゲーションシステムのための汎用的なオンライン時間的キャリブレーション戦略を提案する。
我々は、最適化残差モデルにおいて、タイムオフセットtdを状態パラメータとして使用し、IMU状態を対応する画像のタイムスタンプに整列させる。
我々のアプローチは、特にノイズの多いセンサデータの存在下で、より正確な時間オフセット推定とより高速な収束を提供する。
論文 参考訳(メタデータ) (2025-01-03T12:41:25Z) - MATE: Motion-Augmented Temporal Consistency for Event-based Point Tracking [58.719310295870024]
本稿では,任意の点を追跡するイベントベースのフレームワークを提案する。
事象の間隔に起因する曖昧さを解決するため、運動誘導モジュールは運動ベクトルを局所的なマッチングプロセスに組み込む。
このメソッドは、任意のポイントベースラインのイベントのみのトラッキングに対して、$Survival_50$メトリックを17.9%改善する。
論文 参考訳(メタデータ) (2024-12-02T09:13:29Z) - Joint Spatial-Temporal Calibration for Camera and Global Pose Sensor [0.4143603294943439]
ロボット工学において、モーションキャプチャシステムはローカライズアルゴリズムの精度を測定するために広く利用されている。
これらの機能は、カメラとグローバルポーズセンサーの間で正確で信頼性の高い時空間キャリブレーションパラメータを必要とする。
本研究では,これらのキャリブレーションパラメータを推定する新しい2つの手法を提案する。
論文 参考訳(メタデータ) (2024-03-01T20:56:14Z) - SST-Calib: Simultaneous Spatial-Temporal Parameter Calibration between
LIDAR and Camera [26.59231069298659]
カメラLIDARスイートの校正における幾何学的パラメータと時間的パラメータを共同で推定するセグメンテーションベースのフレームワークを提案する。
提案アルゴリズムは,KITTIデータセット上でテストし,幾何学的パラメータと時間的パラメータの正確なリアルタイムキャリブレーションを示す。
論文 参考訳(メタデータ) (2022-07-08T06:21:52Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
本稿では,合成法とフロー法の両方の利点を生かした,等価寄与法であるTime Lensを紹介する。
最先端のフレームベースおよびイベントベース手法よりもPSNRが最大5.21dB向上したことを示す。
論文 参考訳(メタデータ) (2021-06-14T10:33:47Z) - Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups [68.8204255655161]
本論文では,LiDAR,単眼,ステレオカメラを含む任意のセンサのパラメータを校正する手法を提案する。
提案手法は、通常、車両のセットアップで見られるように、非常に異なる解像度とポーズのデバイスを扱うことができる。
論文 参考訳(メタデータ) (2021-01-12T12:02:26Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
視覚SLAMシステムのための新しい最適化バックボーンを提案する。
従来の単分子SLAMシステムの精度, 効率, 堅牢性を向上させるために, 平均化を活用している。
我々のアプローチは、公開ベンチマークの最先端技術に対して、同等の精度で最大10倍高速に表示することができる。
論文 参考訳(メタデータ) (2020-11-02T18:02:26Z) - Online Initialization and Extrinsic Spatial-Temporal Calibration for
Monocular Visual-Inertial Odometry [19.955414423860788]
本稿では,最適化に基づく単眼的視覚慣性眼球運動計測(VIO)のオンラインブートストラップ法を提案する。
この方法は、カメラとIMU間の相対変換(空間)と時間オフセット(時間)をオンラインに校正し、計量スケール、速度、重力、ジャイロスコープバイアス、加速度計バイアスを推定することができる。
公開データセットにおける実験結果から,初期値とパラメータ,およびセンサのポーズが,提案手法により正確に推定できることが示唆された。
論文 参考訳(メタデータ) (2020-04-12T03:13:08Z) - Spatiotemporal Camera-LiDAR Calibration: A Targetless and Structureless
Approach [32.15405927679048]
ターゲットレスで構造のないカメラ-DARキャリブレーション法を提案する。
本手法は, 時間的パラメータの初期調整を必要としないような, 閉形式解と非構造束を結合する。
提案手法の精度とロバスト性をシミュレーションおよび実データ実験により実証する。
論文 参考訳(メタデータ) (2020-01-17T07:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。