論文の概要: Deep Research: A Survey of Autonomous Research Agents
- arxiv url: http://arxiv.org/abs/2508.12752v1
- Date: Mon, 18 Aug 2025 09:26:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:11.148978
- Title: Deep Research: A Survey of Autonomous Research Agents
- Title(参考訳): Deep Research: A Survey of Autonomous Research Agents
- Authors: Wenlin Zhang, Xiaopeng Li, Yingyi Zhang, Pengyue Jia, Yichao Wang, Huifeng Guo, Yong Liu, Xiangyu Zhao,
- Abstract要約: 大規模言語モデル(LLM)の急速な進歩は、複雑なタスクを自律的に実行可能なエージェントシステムの開発を促している。
これらの制約を克服するため、深層研究のパラダイムが提案され、エージェントは、Webベースの証拠に根ざした包括的で忠実な分析レポートを生成するために、計画、検索、合成に積極的に従事する。
本稿では,計画,質問開発,Web探索,レポート生成の4段階からなるディープリサーチパイプラインの体系的概要について述べる。
- 参考スコア(独自算出の注目度): 33.96146020332329
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of large language models (LLMs) has driven the development of agentic systems capable of autonomously performing complex tasks. Despite their impressive capabilities, LLMs remain constrained by their internal knowledge boundaries. To overcome these limitations, the paradigm of deep research has been proposed, wherein agents actively engage in planning, retrieval, and synthesis to generate comprehensive and faithful analytical reports grounded in web-based evidence. In this survey, we provide a systematic overview of the deep research pipeline, which comprises four core stages: planning, question developing, web exploration, and report generation. For each stage, we analyze the key technical challenges and categorize representative methods developed to address them. Furthermore, we summarize recent advances in optimization techniques and benchmarks tailored for deep research. Finally, we discuss open challenges and promising research directions, aiming to chart a roadmap toward building more capable and trustworthy deep research agents.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は、複雑なタスクを自律的に実行可能なエージェントシステムの開発を促している。
優れた能力にもかかわらず、LLMは内部の知識境界によって制約される。
これらの制限を克服するため、深層研究のパラダイムが提案され、エージェントは、Webベースの証拠に根ざした包括的で忠実な分析レポートを生成するために、計画、検索、合成に積極的に従事する。
本調査では,計画,質問開発,Web探索,レポート生成の4段階からなるディープリサーチパイプラインの体系的概要について述べる。
各段階で、重要な技術的課題を分析し、それに対応するために開発された代表的手法を分類する。
さらに,近年の最適化技術の進歩と,深層研究に適したベンチマークについて概説する。
最後に、より有能で信頼性の高い深層研究エージェントの構築に向けたロードマップの策定を目指して、オープンな課題と有望な研究方向性について論じる。
関連論文リスト
- A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges [30.146391942071126]
大規模言語モデル (LLM) はウェブ検索に革命をもたらした。
これらのエージェントは、ユーザの意図や環境状況を理解することができる。
本調査は,検索エージェントの系統的分析を初めて行った。
論文 参考訳(メタデータ) (2025-08-03T08:02:51Z) - From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
推論とエージェント能力を備えた大規模言語モデル(LLM)は、エージェントディープリサーチ(Agenic Deep Research)と呼ばれる新しいパラダイムを取り入れている。
静的なWeb検索から,計画,探索,学習を行う対話型エージェントベースのシステムへの進化を辿ります。
我々はエージェントディープリサーチが既存のアプローチを著しく上回るだけでなく、将来の情報探索において支配的なパラダイムになることを実証する。
論文 参考訳(メタデータ) (2025-06-23T17:27:19Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments [20.498100965239818]
我々は、LLMベースのディープリサーチエージェントのエンドツーエンドトレーニングのための、初の総合的なフレームワークであるDeepResearcherを紹介する。
固定コーパス内にすべての必要な情報が存在すると仮定するRAGベースのアプローチとは異なり、我々の手法はオープンウェブのノイズ、非構造化、動的性質をナビゲートするエージェントを訓練する。
オープンドメインの研究タスクに関する大規模な実験は、DeepResearcherがエンジニアリングベースの素早いベースラインよりも最大28.9ポイントの大幅な改善を達成していることを示している。
論文 参考訳(メタデータ) (2025-04-04T04:41:28Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。
本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
論文 参考訳(メタデータ) (2024-11-18T16:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。