論文の概要: Fed-DPRoC:Communication-Efficient Differentially Private and Robust Federated Learning
- arxiv url: http://arxiv.org/abs/2508.12978v1
- Date: Mon, 18 Aug 2025 14:52:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:11.385672
- Title: Fed-DPRoC:Communication-Efficient Differentially Private and Robust Federated Learning
- Title(参考訳): Fed-DPRoC:コミュニケーション効率の良い差分私的・ロバストなフェデレーションラーニング
- Authors: Yue Xia, Tayyebeh Jahani-Nezhad, Rawad Bitar,
- Abstract要約: Fed-DPRoCは、差分プライバシー(DP)、ビザンツの堅牢性、通信効率を同時に保証する新しい学習フレームワークである。
Johnson-Lindenstrauss (JL) 変換とロバストアグリゲーションのためのロバストアベレージを併用して、我々のフレームワークをRobAJoLとしてインスタンス化する。
- 参考スコア(独自算出の注目度): 8.321263361036808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Fed-DPRoC, a novel federated learning framework that simultaneously ensures differential privacy (DP), Byzantine robustness, and communication efficiency. We introduce the concept of robust-compatible compression, which enables users to compress DP-protected updates while maintaining the robustness of the aggregation rule. We instantiate our framework as RobAJoL, combining the Johnson-Lindenstrauss (JL) transform for compression with robust averaging for robust aggregation. We theoretically prove the compatibility of JL transform with robust averaging and show that RobAJoL preserves robustness guarantees, ensures DP, and reduces communication cost. Experiments on CIFAR-10 and Fashion MNIST validate our theoretical claims and demonstrate that RobAJoL outperforms existing methods in terms of robustness and utility under different Byzantine attacks.
- Abstract(参考訳): 我々は、差分プライバシー(DP)、ビザンチンの堅牢性、通信効率を同時に保証する新しいフェデレート学習フレームワークであるFed-DPRoCを提案する。
本稿では,DP保護された更新を圧縮し,アグリゲーションルールの堅牢性を維持しながら圧縮する,ロバスト互換圧縮の概念を提案する。
Johnson-Lindenstrauss (JL) 変換とロバストアグリゲーションのためのロバストアベレージを併用して、我々のフレームワークをRobAJoLとしてインスタンス化する。
理論的には、ロバスト平均化によるJL変換の互換性を証明し、ロバスト性保証を保ち、DPを保証し、通信コストを削減できることを示す。
CIFAR-10とFashion MNISTの実験は、我々の理論的な主張を検証し、RobAJoLは、異なるビザンティン攻撃下での堅牢性と実用性の観点から、既存の手法よりも優れていることを示した。
関連論文リスト
- Revisiting Locally Differentially Private Protocols: Towards Better Trade-offs in Privacy, Utility, and Attack Resistance [4.5282933786221395]
ローカル微分プライバシー(LDP)は、特にデータを収集するサーバが信頼できない設定で、強力なプライバシ保護を提供する。
本稿では, LDPプロトコルを改良するための汎用多目的最適化フレームワークを提案する。
我々のフレームワークは、調整可能なプライバシ・ユーティリティ・トレードオフによるLPP機構のモジュール化とコンテキスト対応のデプロイを可能にする。
論文 参考訳(メタデータ) (2025-03-03T12:41:01Z) - Lightweight Federated Learning with Differential Privacy and Straggler Resilience [19.94124499453864]
フェデレートラーニング(FL)は、生データの代わりにモデルパラメータ交換を通じて協調的なモデルトレーニングを可能にする。
パラメータ交換による潜在的な推論攻撃を避けるため、差分プライバシー(DP)は様々な攻撃に対して厳格な保証を提供する。
提案するLightDP-FLは,信頼できないピアやサーバに対して,証明可能なDPを保証する,新しい軽量なスキームである。
論文 参考訳(メタデータ) (2024-12-09T00:54:00Z) - DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning Based on Constant-Overhead Linear Secret Resharing [51.336015600778396]
本稿では,ベスト・オブ・ボス・ワールドを実現するための分散行列機構,分散DPのプライバシ向上,行列機構の実用性向上について紹介する。
我々は、異なるトレーニングイテレーションのクライアント委員会間で、一定の通信オーバーヘッドで機密値をセキュアに転送する、新しい暗号プロトコルを用いてこれを実現する。
論文 参考訳(メタデータ) (2024-10-21T16:25:14Z) - Universally Harmonizing Differential Privacy Mechanisms for Federated Learning: Boosting Accuracy and Convergence [22.946928984205588]
ディファレンシャル・プライベート・フェデレーション・ラーニング(DP-FL)は協調モデルトレーニングにおいて有望な手法である。
本稿では,任意のランダム化機構を普遍的に調和させる最初のDP-FLフレームワーク(UDP-FL)を提案する。
その結果,UDP-FLは異なる推論攻撃に対して強い耐性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-20T00:11:59Z) - Fed-CVLC: Compressing Federated Learning Communications with
Variable-Length Codes [54.18186259484828]
フェデレートラーニング(FL)パラダイムでは、パラメータサーバ(PS)がモデル収集、更新アグリゲーション、複数のラウンドでのモデル分散のために、分散参加クライアントと同時通信する。
FLの圧縮には可変長が有用であることを示す。
本稿では,Fed-CVLC(Federated Learning Compression with Variable-Length Codes)を提案する。
論文 参考訳(メタデータ) (2024-02-06T07:25:21Z) - Robust Multi-Agent Reinforcement Learning via Adversarial
Regularization: Theoretical Foundation and Stable Algorithms [79.61176746380718]
MARL(Multi-Agent Reinforcement Learning)はいくつかの領域で有望な結果を示している。
MARLポリシーは、しばしば堅牢性を欠き、環境の小さな変化に敏感である。
政策のリプシッツ定数を制御することにより、ロバスト性を得ることができることを示す。
政策のリプシッツ連続性を促進する新しい堅牢なMARLフレームワークであるERNIEを提案する。
論文 参考訳(メタデータ) (2023-10-16T20:14:06Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。