論文の概要: Predicting the Performance of Graph Convolutional Networks with Spectral Properties of the Graph Laplacian
- arxiv url: http://arxiv.org/abs/2508.12993v1
- Date: Mon, 18 Aug 2025 15:13:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-19 14:49:11.391225
- Title: Predicting the Performance of Graph Convolutional Networks with Spectral Properties of the Graph Laplacian
- Title(参考訳): グラフラプラシアンのスペクトル特性を有するグラフ畳み込みネットワークの性能予測
- Authors: Shalima Binta Manir, Tim Oates,
- Abstract要約: グラフ畳み込みネットワーク(GCN)の文献では、GCN層を積み重ねることでノード分類やエッジ予測といったタスクのパフォーマンスが向上する可能性がある、という共通の見解がある。
我々は、グラフの代数的接続(Fiedler値)がGCN性能のよい予測因子であることを経験的に見出した。
- 参考スコア(独自算出の注目度): 2.9540164442363976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A common observation in the Graph Convolutional Network (GCN) literature is that stacking GCN layers may or may not result in better performance on tasks like node classification and edge prediction. We have found empirically that a graph's algebraic connectivity, which is known as the Fiedler value, is a good predictor of GCN performance. Intuitively, graphs with similar Fiedler values have analogous structural properties, suggesting that the same filters and hyperparameters may yield similar results when used with GCNs, and that transfer learning may be more effective between graphs with similar algebraic connectivity. We explore this theoretically and empirically with experiments on synthetic and real graph data, including the Cora, CiteSeer and Polblogs datasets. We explore multiple ways of aggregating the Fiedler value for connected components in the graphs to arrive at a value for the entire graph, and show that it can be used to predict GCN performance. We also present theoretical arguments as to why the Fiedler value is a good predictor.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)の文献では、GCN層を積み重ねることでノード分類やエッジ予測といったタスクのパフォーマンスが向上する可能性がある、という共通の見解がある。
我々は、グラフの代数的接続(Fiedler値)がGCN性能のよい予測因子であることを経験的に見出した。
直感的には、同様のフィドラー値を持つグラフは類似の構造的性質を持ち、同じフィルタとハイパーパラメータがGCNで使用されるときも同様の結果が得られる可能性があり、また変換学習は類似の代数的接続を持つグラフ間でより効果的である可能性があることを示唆している。
我々は、Cora, CiteSeer, Polblogsのデータセットを含む、合成および実グラフデータに関する実験により、理論的および経験的にこれを探求する。
グラフ内の連結成分に対するFiedler値をグラフ全体の値に到達するための複数の方法を検討し、GCNのパフォーマンスを予測するために使用できることを示す。
また、なぜFiedler値が良い予測因子であるのかという理論的な議論も提示する。
関連論文リスト
- It Takes a Graph to Know a Graph: Rewiring for Homophily with a Reference Graph [19.222317334613162]
グラフニューラルネットワーク(GNN)は、グラフ構造化データの解析に長けているが、連結ノードがしばしば異なるクラスに属している異種グラフに苦戦している。
我々は、エッジホモフィリー、GNN埋め込みの滑らかさ、ノード分類性能をリンクする理論的基礎を提供する。
参照グラフを用いてグラフをホモフィリに増加させるリワイアリングフレームワークを導入し、リワイアグラフのホモフィリを理論的に保証する。
論文 参考訳(メタデータ) (2025-05-18T13:28:56Z) - Disentangled Graph Representation Based on Substructure-Aware Graph Optimal Matching Kernel Convolutional Networks [4.912298804026689]
グラフは関係データを効果的に特徴付け、グラフ表現学習法を駆動する。
最近の不整合グラフ表現学習は、グラフデータの独立因子を分離することにより、解釈可能性を高める。
本稿では,この制限に対処するグラフ最適マッチングカーネル畳み込みネットワーク(GOMKCN)を提案する。
論文 参考訳(メタデータ) (2025-04-23T02:26:33Z) - A Spectral Analysis of Graph Neural Networks on Dense and Sparse Graphs [13.954735096637298]
そこで我々は,グラフスペクトルの空間分布がグラフスペクトルに与える影響を解析し,グラフニューラルネットワーク(GNN)の高密度グラフとスパースグラフのノード分類における性能について検討した。
GNNはスパースグラフのスペクトル法よりも優れており、これらの結果を合成グラフと実グラフの両方で数値例で示すことができる。
論文 参考訳(メタデータ) (2022-11-06T22:38:13Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
グラフニューラルネットワーク(GNN)は、ノード近傍の情報を集約し変換することで、グラフ構造とノードの特徴を探索する。
グラフ構造を利用してノード類似性を効果的かつ効率的に保存できるSimP-GCNを提案する。
本研究は,SimP-GCNが3つの分類グラフと4つの非補助グラフを含む7つのベンチマークデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-11-19T04:18:01Z) - SAIL: Self-Augmented Graph Contrastive Learning [40.76236706250037]
本稿では,教師なしシナリオに対するグラフニューラルネットワーク(GNN)を用いたノード表現の学習について検討する。
理論的解析を導出し,グラフデータセット間の非定常なGNNの性能に関する実証実験を行う。
論文 参考訳(メタデータ) (2020-09-02T10:27:30Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。