論文の概要: DAASH: A Meta-Attack Framework for Synthesizing Effective and Stealthy Adversarial Examples
- arxiv url: http://arxiv.org/abs/2508.13309v1
- Date: Mon, 18 Aug 2025 18:54:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.705266
- Title: DAASH: A Meta-Attack Framework for Synthesizing Effective and Stealthy Adversarial Examples
- Title(参考訳): DAASH: 効果的で定常な逆転例を合成するためのメタアタックフレームワーク
- Authors: Abdullah Al Nomaan Nafi, Habibur Rahaman, Zafaryab Haider, Tanzim Mahfuz, Fnu Suya, Swarup Bhunia, Prabuddha Chakraborty,
- Abstract要約: DAASHは完全に差別化可能なメタアタックフレームワークであり、効果的かつ知覚的に整列した敵の例を生成する。
CIFAR-10, CIFAR-100, ImageNetを対象とし, DAASHの評価を行った。
- 参考スコア(独自算出の注目度): 6.174972220087909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous techniques have been proposed for generating adversarial examples in white-box settings under strict Lp-norm constraints. However, such norm-bounded examples often fail to align well with human perception, and only recently have a few methods begun specifically exploring perceptually aligned adversarial examples. Moreover, it remains unclear whether insights from Lp-constrained attacks can be effectively leveraged to improve perceptual efficacy. In this paper, we introduce DAASH, a fully differentiable meta-attack framework that generates effective and perceptually aligned adversarial examples by strategically composing existing Lp-based attack methods. DAASH operates in a multi-stage fashion: at each stage, it aggregates candidate adversarial examples from multiple base attacks using learned, adaptive weights and propagates the result to the next stage. A novel meta-loss function guides this process by jointly minimizing misclassification loss and perceptual distortion, enabling the framework to dynamically modulate the contribution of each base attack throughout the stages. We evaluate DAASH on adversarially trained models across CIFAR-10, CIFAR-100, and ImageNet. Despite relying solely on Lp-constrained based methods, DAASH significantly outperforms state-of-the-art perceptual attacks such as AdvAD -- achieving higher attack success rates (e.g., 20.63\% improvement) and superior visual quality, as measured by SSIM, LPIPS, and FID (improvements $\approx$ of 11, 0.015, and 5.7, respectively). Furthermore, DAASH generalizes well to unseen defenses, making it a practical and strong baseline for evaluating robustness without requiring handcrafted adaptive attacks for each new defense.
- Abstract(参考訳): 厳密なLp-ノルム制約の下で、ホワイトボックス設定の逆例を生成するための多くの手法が提案されている。
しかし、このようなノルムに縛られた例は人間の知覚とうまく一致しないことが多く、直近では知覚に整合した敵の例を探求するいくつかの方法があるのみである。
また,Lp拘束攻撃からの洞察を効果的に活用して知覚効果を向上させることができるかは,まだ不明である。
本稿では,既存のLpベースの攻撃手法を戦略的に構築することにより,効果的かつ知覚的に整合した敵例を生成する,完全に差別化可能なメタアタックフレームワークであるDAASHを紹介する。
DAASHは多段階的に動作し、各段階において、学習された適応的な重みを使って複数のベースアタックから候補敵のサンプルを集約し、その結果を次のステージに伝播する。
新たなメタロス関数は、誤分類損失と知覚歪みを共同で最小化し、フレームワークがステージ全体を通して各ベースアタックの寄与を動的に調節できるようにすることによって、このプロセスを導く。
CIFAR-10, CIFAR-100, ImageNetを対象とし, DAASHの評価を行った。
SSIM、LPIPS、FID(それぞれ$\approx$11, 0.015, 5.7)による攻撃成功率(例:20.63\%の改善)と優れた視覚的品質(それぞれ$\approx$11, 0.015, 5.7)を達成する。
さらに、DAASHは目に見えない防御を一般化し、新しい防衛ごとに手作りの適応攻撃を必要とせず、ロバスト性を評価するための実用的で強力なベースラインとなる。
関連論文リスト
- AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples [26.37278338032268]
アドリシャルな例は、通常、勾配ベースの攻撃に最適化される。
それぞれ異なる実験装置を用いて前任者を上回る性能を発揮する。
これは過度に最適化され、偏見のある評価を提供する。
論文 参考訳(メタデータ) (2024-04-30T11:19:05Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
敵攻撃は入力データに微妙な摂動をもたらす可能性がある。
最近の攻撃方法は比較的高い攻撃成功率(ASR)を達成することができる。
そこで本研究では,分散ロラをベースとしたDALA(Adversarial Attack)手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T23:43:47Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Towards Compositional Adversarial Robustness: Generalizing Adversarial
Training to Composite Semantic Perturbations [70.05004034081377]
まず,合成逆数例を生成する新しい手法を提案する。
本手法は, コンポーネントワイド射影勾配勾配を利用して最適攻撃組成を求める。
次に,モデルロバスト性を$ell_p$-ballから複合意味摂動へ拡張するための一般化逆トレーニング(GAT)を提案する。
論文 参考訳(メタデータ) (2022-02-09T02:41:56Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z) - AI-GAN: Attack-Inspired Generation of Adversarial Examples [14.709927651682783]
ディープニューラルネットワーク(DNN)は、入力に知覚不可能な摂動を加えることで構築された敵の例に対して脆弱である。
近年、様々な攻撃や戦略が提案されているが、現実的かつ効率的に敵の例を生成する方法は未解決のままである。
本稿では、ジェネレータ、識別器、攻撃者が共同で訓練されるAI-GAN(Attack-Inspired GAN)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-06T10:57:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。