論文の概要: ASAP: Unsupervised Post-training with Label Distribution Shift Adaptive Learning Rate
- arxiv url: http://arxiv.org/abs/2508.13445v1
- Date: Tue, 19 Aug 2025 01:59:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.766145
- Title: ASAP: Unsupervised Post-training with Label Distribution Shift Adaptive Learning Rate
- Title(参考訳): ASAP: ラベル分布シフト適応学習率を用いた教師なしポストトレーニング
- Authors: Heewon Park, Mugon Joe, Miru Kim, Minhae Kwon,
- Abstract要約: ASAPは、現在の出力と以前の出力の間の余剰距離を計算し、それを有界範囲にマッピングすることで学習率を調整する。
実験により、ASAPは精度と効率を一貫して改善し、教師なしモデル適応に実用的であることが示された。
- 参考スコア(独自算出の注目度): 3.187381965457262
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In real-world applications, machine learning models face online label shift, where label distributions change over time. Effective adaptation requires careful learning rate selection: too low slows adaptation and too high causes instability. We propose ASAP (Adaptive Shift Aware Post-training), which dynamically adjusts the learning rate by computing the cosine distance between current and previous unlabeled outputs and mapping it within a bounded range. ASAP requires no labels, model ensembles, or past inputs, using only the previous softmax output for fast, lightweight adaptation. Experiments across multiple datasets and shift scenarios show ASAP consistently improves accuracy and efficiency, making it practical for unsupervised model adaptation.
- Abstract(参考訳): 現実世界のアプリケーションでは、機械学習モデルは、ラベルの分布が時間とともに変化するオンラインラベルシフトに直面します。
効果的な適応には、注意深い学習率の選択が必要です。
本稿では,現在および過去の未ラベル出力の余剰距離を計算し,それを有界範囲にマッピングすることにより,学習率を動的に調整するASAP(Adaptive Shift Aware Post-training)を提案する。
ASAPはラベル、モデルアンサンブル、過去の入力を必要とせず、高速で軽量な適応のために以前のソフトマックス出力のみを使用する。
複数のデータセットとシフトシナリオにわたる実験は、ASAPが一貫して精度と効率を向上し、教師なしモデル適応に実用的であることを示している。
関連論文リスト
- Channel-Selective Normalization for Label-Shift Robust Test-Time Adaptation [16.657929958093824]
テスト時間適応は、推論中にモデルを新しいデータ分布に調整するアプローチである。
テスト時のバッチ正規化は、ドメインシフトベンチマークで魅力的なパフォーマンスを達成した、シンプルで一般的な方法である。
本稿では、ディープネットワークにおけるチャネルのみを選択的に適応させ、ラベルシフトに敏感な劇的な適応を最小化することで、この問題に対処することを提案する。
論文 参考訳(メタデータ) (2024-02-07T15:41:01Z) - Parameter-tuning-free data entry error unlearning with adaptive
selective synaptic dampening [51.34904967046097]
本稿では,パラメータチューニングの必要性を排除した選択的シナプス減衰アンラーニング法の拡張を提案する。
本稿では,ResNet18とVision Transformerの未学習タスクにおける適応選択的シナプス減衰(ASSD)の性能を示す。
このアプローチの適用は、サプライチェーン管理などの産業環境において特に魅力的である。
論文 参考訳(メタデータ) (2024-02-06T14:04:31Z) - Online Feature Updates Improve Online (Generalized) Label Shift Adaptation [51.328801874640675]
オンライン特徴更新を用いたオンラインラベルシフト適応法(OLS-OFU)は,自己教師付き学習を利用して特徴抽出プロセスを洗練する。
アルゴリズムを慎重に設計することで、OLS-OFUは改善された特徴を考慮しつつ、文献の結果に類似したオンライン後悔の収束を維持している。
論文 参考訳(メタデータ) (2024-02-05T22:03:25Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Contextual Squeeze-and-Excitation for Efficient Few-Shot Image
Classification [57.36281142038042]
本稿では,事前学習したニューラルネットワークを新しいタスクで調整し,性能を大幅に向上させる,Contextual Squeeze-and-Excitation (CaSE) という適応ブロックを提案する。
また、メタトレーニングされたCaSEブロックと微調整ルーチンを利用して効率よく適応する、アッパーCaSEと呼ばれるコーディネートダイスに基づく新しいトレーニングプロトコルを提案する。
論文 参考訳(メタデータ) (2022-06-20T15:25:08Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - Online Adaptation to Label Distribution Shift [37.91472909652585]
我々は、FTL(Follow The Leader)やOGD(Online Gradient Descent)といった古典的なオンライン学習手法にインスパイアされた適応アルゴリズムを提案する。
シミュレーションと実世界におけるラベルの分布変化の両面から得られた知見を実証的に検証し、OGDが様々な難解なラベルのシフトシナリオに対して特に効果的で堅牢であることを示す。
論文 参考訳(メタデータ) (2021-07-09T16:12:19Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。