論文の概要: Explainability of Algorithms
- arxiv url: http://arxiv.org/abs/2508.13529v1
- Date: Tue, 19 Aug 2025 05:42:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.807094
- Title: Explainability of Algorithms
- Title(参考訳): アルゴリズムの説明可能性
- Authors: Andrés Páez,
- Abstract要約: 多くの複雑な機械学習アルゴリズムの不透明さは、人工知能(AI)の倫理的発展の主要な障害の一つとしてしばしば言及されている。
この章では、不透明さの理解方法と、それらそれぞれに由来する倫理的意味について考察する。
分析が示すように、説明可能なAI(XAI)は依然として多くの課題に直面している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The opaqueness of many complex machine learning algorithms is often mentioned as one of the main obstacles to the ethical development of artificial intelligence (AI). But what does it mean for an algorithm to be opaque? Highly complex algorithms such as artificial neural networks process enormous volumes of data in parallel along multiple hidden layers of interconnected nodes, rendering their inner workings epistemically inaccessible to any human being, including their designers and developers; they are "black boxes" for all their stakeholders. But opaqueness is not always the inevitable result of technical complexity. Sometimes, the way an algorithm works is intentionally hidden from view for proprietary reasons, especially in commercial automated decision systems, creating an entirely different type of opaqueness. In the first part of the chapter, we will examine these two ways of understanding opacity and the ethical implications that stem from each of them. In the second part, we explore the different explanatory methods that have been developed in computer science to overcome an AI system's technical opaqueness. As the analysis shows, explainable AI (XAI) still faces numerous challenges.
- Abstract(参考訳): 多くの複雑な機械学習アルゴリズムの不透明さは、人工知能(AI)の倫理的発展の主要な障害の一つとしてしばしば言及されている。
しかし、アルゴリズムが不透明であることの意味は何だろうか?
人工ニューラルネットワークのような非常に複雑なアルゴリズムは、複数の隠れたノードの層に沿って、大量のデータを並列に処理し、その内部の動作は、設計者や開発者を含むすべての人間に近づかない。
しかし、不透明さが技術的複雑さの必然的な結果であるとは限らない。
アルゴリズムの動作方法は、プロプライエタリな理由から、特に商用の自動決定システムにおいて、意図的に隠されている場合もあります。
第1章では、不透明感の理解方法と、それら各章に由来する倫理的意味について検討する。
第2部では、AIシステムの技術的不透明さを克服するために、コンピュータサイエンスで開発されたさまざまな説明方法について検討する。
分析が示すように、説明可能なAI(XAI)は依然として多くの課題に直面している。
関連論文リスト
- Solving the enigma: Enhancing faithfulness and comprehensibility in explanations of deep networks [3.9584068556746246]
本稿では,説明の正確性と理解性の両方を最大化することに集中して,ディープネットワークの説明可能性を高めるために設計された新しいフレームワークを提案する。
我々のフレームワークは、複数の確立されたXAI手法の出力を統合し、"説明(explanation)"と呼ばれる非線形ニューラルネットワークモデルを活用し、統一的で最適な説明を構築する。
論文 参考訳(メタデータ) (2024-05-16T11:49:08Z) - Artificial intelligence is algorithmic mimicry: why artificial "agents"
are not (and won't be) proper agents [0.0]
人工知能(AGI)開発の可能性について検討する
私は「緊急性」の概念に特に焦点をあてて、生活システムとアルゴリズムシステムを比較します。
真のAGIが現在のAI研究のアルゴリズムフレームワークで開発される可能性は極めて低い。
論文 参考訳(メタデータ) (2023-06-27T19:25:09Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - On Explainability in AI-Solutions: A Cross-Domain Survey [4.394025678691688]
システムモデルを自動的に導出する際、AIアルゴリズムは人間には検出できないデータで関係を学習する。
モデルが複雑になればなるほど、人間が意思決定の理由を理解するのが難しくなる。
この研究は、この話題に関する広範な文献調査を提供し、その大部分は、他の調査から成っている。
論文 参考訳(メタデータ) (2022-10-11T06:21:47Z) - Divide & Conquer Imitation Learning [75.31752559017978]
模倣学習は学習プロセスをブートストラップするための強力なアプローチである。
本稿では,専門的軌道の状態から複雑なロボットタスクを模倣する新しいアルゴリズムを提案する。
提案手法は,非ホロノミックナビゲーションタスクを模倣し,非常に高いサンプル効率で複雑なロボット操作タスクにスケールすることを示す。
論文 参考訳(メタデータ) (2022-04-15T09:56:50Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Explainable Artificial Intelligence (XAI): An Engineering Perspective [0.0]
XAIは、いわゆるブラックボックスAIアルゴリズムをホワイトボックスアルゴリズムに変換するテクニックと方法のセットです。
XAIのステークホルダを議論し、エンジニアリングの観点からXAIの数学的輪郭を説明します。
この研究は、XAIの分野における研究の新しい道を特定するための探索的研究です。
論文 参考訳(メタデータ) (2021-01-10T19:49:12Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。