論文の概要: FLAIR: Frequency- and Locality-Aware Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2508.13544v1
- Date: Tue, 19 Aug 2025 06:06:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.813457
- Title: FLAIR: Frequency- and Locality-Aware Implicit Neural Representations
- Title(参考訳): FLAIR:周波数と局所性を考慮した暗黙のニューラル表現
- Authors: Sukhun Ko, Dahyeon Kye, Kyle Min, Chanho Eom, Jihyong Oh,
- Abstract要約: Implicit Representations (INR) はニューラルネットワークを利用して、座標を対応する信号にマッピングし、連続的かつコンパクトな表現を可能にする。
既存のINRは周波数選択性、空間的局所化、スパース表現に欠けており、冗長な信号成分への過度な依存につながっている。
本稿では2つの重要なイノベーションを取り入れたFLAIR(Frequency- and Locality-Aware Implicit Representations)を提案する。
- 参考スコア(独自算出の注目度): 11.126534898413201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit Neural Representations (INRs) leverage neural networks to map coordinates to corresponding signals, enabling continuous and compact representations. This paradigm has driven significant advances in various vision tasks. However, existing INRs lack frequency selectivity, spatial localization, and sparse representations, leading to an over-reliance on redundant signal components. Consequently, they exhibit spectral bias, tending to learn low-frequency components early while struggling to capture fine high-frequency details. To address these issues, we propose FLAIR (Frequency- and Locality-Aware Implicit Neural Representations), which incorporates two key innovations. The first is RC-GAUSS, a novel activation designed for explicit frequency selection and spatial localization under the constraints of the time-frequency uncertainty principle (TFUP). The second is Wavelet-Energy-Guided Encoding (WEGE), which leverages the discrete wavelet transform (DWT) to compute energy scores and explicitly guide frequency information to the network. Our method consistently outperforms existing INRs in 2D image representation and restoration, as well as 3D reconstruction.
- Abstract(参考訳): Inlicit Neural Representation (INR)はニューラルネットワークを利用して、座標を対応する信号にマッピングし、連続的かつコンパクトな表現を可能にする。
このパラダイムは様々なビジョンタスクにおいて大きな進歩をもたらした。
しかし、既存のINRは周波数選択性、空間的局所化、スパース表現に欠けており、冗長な信号成分への過度な依存につながっている。
その結果、スペクトルバイアスが発生し、高周波の細部を捉えるのに苦労しながら、早く低周波成分を学習する傾向にある。
これらの問題に対処するために,2つの重要なイノベーションを取り入れたFLAIR(Frequency- and Locality-Aware Implicit Neural Representations)を提案する。
第1のRC-GAUSSは、時間周波数不確実性原理(TFUP)の制約の下で、明示的な周波数選択と空間的局所化のために設計された新しいアクティベーションである。
2つ目はWavelet-Energy-Guided Encoding (WEGE)であり、これは離散ウェーブレット変換(DWT)を利用してエネルギースコアを計算し、周波数情報をネットワークに明示的に導く。
提案手法は2次元画像表現と復元において既存のINRよりも常に優れており、3次元再構成も可能である。
関連論文リスト
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
リモートセンシング画像の変化検出は,自然災害監視,都市拡張追跡,インフラ管理など,さまざまな工学的応用において重要な役割を担っている。
既存のほとんどの手法は空間領域モデリングに依存しており、特徴表現の限られた多様性は微妙な変化領域の検出を妨げる。
本研究では、特にウェーブレット領域における周波数領域の特徴モデリングが周波数成分の微細な違いを増幅し、空間領域において捉えにくいエッジ変化の知覚を高めることを観察する。
論文 参考訳(メタデータ) (2025-08-07T11:14:16Z) - FADPNet: Frequency-Aware Dual-Path Network for Face Super-Resolution [70.61549422952193]
計算コストの制限による顔超解像(FSR)は未解決の問題である。
既存のアプローチでは、全ての顔のピクセルを等しく扱い、計算資源を最適以下に割り当てる。
本稿では、低周波成分と高周波成分に顔の特徴を分解する周波数対応デュアルパスネットワークであるFADPNetを提案する。
論文 参考訳(メタデータ) (2025-06-17T02:33:42Z) - SpINRv2: Implicit Neural Representation for Passband FMCW Radars [0.15193212081459279]
本研究では,周波数変調連続波レーダを用いた高忠実度ボリューム再構成のためのニューラルネットワークSpINRv2を提案する。
我々のコアコントリビューションは、クローズドフォーム合成を用いて複雑なレーダ応答をキャプチャする、完全微分可能な周波数領域フォワードモデルである。
細かな範囲の解像度で生じる曖昧なサブビンの曖昧さを解消するために、スパーシリティと正規化を導入する。
論文 参考訳(メタデータ) (2025-06-09T19:21:27Z) - Freqformer: Image-Demoiréing Transformer via Efficient Frequency Decomposition [83.40450475728792]
本稿では,Freqformerについて述べる。Freqformerは,ターゲット周波数分離による画像復号化に特化して設計されたトランスフォーマーベースのフレームワークである。
本手法は,モワールパターンを高周波数空間局在化テクスチャと低周波数スケールローバスト色歪みに明確に分割する有効な周波数分解を行う。
様々なデモアのベンチマーク実験により、Freqformerは、コンパクトなモデルサイズで最先端のパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2025-05-25T12:23:10Z) - Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks [4.499833362998488]
入射神経表現(INR)は、複雑な信号の連続的および分解非依存的な表現を提供するためにニューラルネットワークを使用する。
提案したFKANは、第1層のフーリエ級数としてモデル化された学習可能なアクティベーション関数を用いて、タスク固有の周波数成分を効果的に制御し、学習する。
実験結果から,提案したFKANモデルは,最先端の3つのベースラインスキームよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-09-14T05:53:33Z) - 3D Visibility-aware Generalizable Neural Radiance Fields for Interacting
Hands [51.305421495638434]
ニューラル放射場(NeRF)は、シーン、オブジェクト、人間の3D表現を約束する。
本稿では,手動操作のための一般化可能な視認可能なNeRFフレームワークを提案する。
Interhand2.6Mデータセットの実験により、提案したVA-NeRFは従来のNeRFよりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2024-01-02T00:42:06Z) - FINER: Flexible spectral-bias tuning in Implicit NEural Representation
by Variable-periodic Activation Functions [40.80112550091512]
暗黙の神経表現は、信号処理の分野で革命を引き起こしている。
現在のINR技術は、サポートされた周波数セットをチューニングする制限された能力に悩まされている。
本稿では,FINERを提案する可変周期アクティベーション関数を提案する。
本研究では,FINERの2次元画像適合性,3次元符号付き距離場表現,および5次元ニューラル場放射率最適化の文脈における機能を示す。
論文 参考訳(メタデータ) (2023-12-05T02:23:41Z) - Spatial-Frequency U-Net for Denoising Diffusion Probabilistic Models [89.76587063609806]
画素空間の代わりにウェーブレット空間における拡散確率モデル(DDPM)を視覚合成のために検討した。
ウェーブレット信号を明示的にモデル化することで、我々のモデルは複数のデータセット上でより高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2023-07-27T06:53:16Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
光学フローベースやエンド・ツー・エンドのディープラーニングベースのソリューションのような既存の方法は、詳細な復元やゴーストを除去する際にエラーを起こしやすい。
本研究では、周波数領域でHDR融合を行うための新しい周波数誘導型エンド・ツー・エンドディープニューラルネットワーク(FNet)を提案し、ウェーブレット変換(DWT)を用いて入力を異なる周波数帯域に分解する。
低周波信号は特定のゴーストアーティファクトを避けるために使用され、高周波信号は詳細を保存するために使用される。
論文 参考訳(メタデータ) (2021-08-03T12:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。