論文の概要: GLASS: Test-Time Acceleration for LLMs via Global-Local Neural Importance Aggregation
- arxiv url: http://arxiv.org/abs/2508.14302v1
- Date: Tue, 19 Aug 2025 22:50:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.286656
- Title: GLASS: Test-Time Acceleration for LLMs via Global-Local Neural Importance Aggregation
- Title(参考訳): GLASS:グローバルローカル・ニューラル・コンパタンス・アグリゲーションによるLCMのテスト時間加速
- Authors: Amirmohsen Sattarifard, Sepehr Lavasani, Ehsan Imani, Kunlin Zhang, Hanlin Xu, Fengyu Sun, Negar Hassanpour, Chao Gao,
- Abstract要約: A/I-GLASS: Activation- and Impact-based Global-Local Neural importance aggregate for feed-forward network SparSification。
複数のLarge Language Models (LLM) とベンチマークによる実証的な結果から、GLASSは事前のトレーニング不要な手法よりも大幅に優れていたことが示されている。
- 参考スコア(独自算出の注目度): 12.921040231832082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying Large Language Models (LLMs) on edge hardware demands aggressive, prompt-aware dynamic pruning to reduce computation without degrading quality. Static or predictor-based schemes either lock in a single sparsity pattern or incur extra runtime overhead, and recent zero-shot methods that rely on statistics from a single prompt fail on short prompt and/or long generation scenarios. We introduce A/I-GLASS: Activation- and Impact-based Global-Local neural importance Aggregation for feed-forward network SparSification, two training-free methods that dynamically select FFN units using a rank-aggregation of prompt local and model-intrinsic global neuron statistics. Empirical results across multiple LLMs and benchmarks demonstrate that GLASS significantly outperforms prior training-free methods, particularly in challenging long-form generation scenarios, without relying on auxiliary predictors or adding any inference overhead.
- Abstract(参考訳): エッジハードウェアに大規模言語モデル(LLM)をデプロイするには、品質を劣化させることなく計算量を削減するために、積極的な、プロンプト対応の動的プルーニングが必要である。
静的または予測器ベースのスキームは、1つのスパーシティパターンにロックするか、余分なランタイムオーバーヘッドを発生させるか、あるいは1つのプロンプトからの統計に依存する最近のゼロショットメソッドは、短いプロンプトまたは/または長い生成シナリオで失敗する。
A/I-GLASS: Activation- and Impact-based Global-Local Neural importance Aggregation for feed-forward network SparSification, two training-free method that dynamic select FFN units using rank-aggregation of prompt local and model-intrinsic global neuron statistics。
複数のLCMとベンチマークによる実証的な結果から、GLASSは事前のトレーニング不要な手法、特に長期化のシナリオにおいて、補助的な予測器や推論オーバーヘッドに頼らずに大幅に性能が向上することが示された。
関連論文リスト
- Quantization Meets dLLMs: A Systematic Study of Post-training Quantization for Diffusion LLMs [54.70676039314542]
本稿では拡散に基づく言語モデルの定量化に関する最初の体系的研究について述べる。
異常に大きなアクティベーション値によって特徴付けられるアクティベーションアウトリーチの存在を同定する。
我々は、最先端のPTQ手法を実装し、複数のタスクタイプとモデル変種を包括的に評価する。
論文 参考訳(メタデータ) (2025-08-20T17:59:51Z) - SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
大規模言語モデル(LLM)は、強化学習(RL)による微調整時に強い推論能力を示す。
トレーニング対象のモデルの性能に基づいて,効率的な学習を可能にする自己評価学習フレームワークである textbfSPaRFT を提案する。
論文 参考訳(メタデータ) (2025-08-07T03:50:48Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
検証可能な報酬付き大規模強化学習(RLVR)は,大規模言語モデル(LLM)を単一ターン推論タスクに活用する効果を実証している。
現在のRLアルゴリズムは、モデル固有のロングホライゾン推論能力と、マルチターンツールインタラクションにおけるその習熟性のバランスが不十分である。
エージェント強化ポリシー最適化(ARPO: Agentic Reinforced Policy Optimization)は,マルチターンLDMエージェントを学習するためのエージェントRLアルゴリズムである。
論文 参考訳(メタデータ) (2025-07-26T07:53:11Z) - Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models? [62.579951798437115]
本研究では任意のプロンプトの反復的近似評価について検討する。
Model Predictive Prompt Selection (MoPPS)はベイズにおけるリスク予測フレームワークである。
MoPPSは迅速な困難を確実に予測し、ロールアウトを大幅に削減したトレーニングを加速する。
論文 参考訳(メタデータ) (2025-07-07T03:20:52Z) - Test-Time Learning for Large Language Models [33.11605667376906]
大規模言語モデル(LLM)のためのテスト時間学習(TTL)パラダイムを提案する。
LLMはテスト中にラベルなしのテストデータのみを使用してターゲットドメインに動的に適応する。
TLMはドメイン知識適応における元のLLMと比較して少なくとも20%性能が向上することを示す。
論文 参考訳(メタデータ) (2025-05-27T02:18:59Z) - LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
LLM(Large Language Models)をスクラッチからトレーニングするには膨大な計算資源が必要であるため、非常に高価である。
モデルスケーリングアップは、より小さなモデルのパラメータを活用してより大きなモデルを作成することで、有望なソリューションを提供する。
深度スケールアップのための新しい学習方法である textbfLESA を提案する。
論文 参考訳(メタデータ) (2025-02-19T14:58:48Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
パティオ時間予測は、輸送システム、物流、サプライチェーン管理など、様々な分野において重要な役割を担っている。
本稿では,オープンソースの大規模・小規模言語モデル(LLM,LM)と従来の予測手法を組み合わせたハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2024-08-26T16:11:53Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
大規模な言語モデル(LLM)は、ダウンストリームタスク間で印象的なパフォーマンスを達成するために、広範囲のラベル付きデータセットとトレーニング計算を必要とすることが多い。
本稿では,LLMが独自ラベルを自動でキュレートし,未知のデータサンプルを選択的に学習する自己学習パラダイムについて検討する。
経験的評価は、複数の被験者にまたがる世代における幻覚の減少に有意な改善を示した。
論文 参考訳(メタデータ) (2024-06-17T07:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。