論文の概要: WeedSense: Multi-Task Learning for Weed Segmentation, Height Estimation, and Growth Stage Classification
- arxiv url: http://arxiv.org/abs/2508.14486v1
- Date: Wed, 20 Aug 2025 07:21:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.373933
- Title: WeedSense: Multi-Task Learning for Weed Segmentation, Height Estimation, and Growth Stage Classification
- Title(参考訳): WeedSense:雑草分類・高さ推定・成長段階分類のためのマルチタスク学習
- Authors: Toqi Tahamid Sarker, Khaled R Ahmed, Taminul Islam, Cristiana Bernardi Rankrape, Karla Gage,
- Abstract要約: WeedSenseは包括的雑草分析のための新しいマルチタスク学習アーキテクチャである。
我々は,11週間の生育周期で16種の雑草を採集したデータセットを,画素レベルのアノテーション,高さ測定,時間ラベルを用いて提示した。
セグメント化では89.78%,高さ推定では1.67cm MAE,成長段階分類では99.99%,リアルタイム推定では160FPSの精度でmIoUを実現した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Weed management represents a critical challenge in agriculture, significantly impacting crop yields and requiring substantial resources for control. Effective weed monitoring and analysis strategies are crucial for implementing sustainable agricultural practices and site-specific management approaches. We introduce WeedSense, a novel multi-task learning architecture for comprehensive weed analysis that jointly performs semantic segmentation, height estimation, and growth stage classification. We present a unique dataset capturing 16 weed species over an 11-week growth cycle with pixel-level annotations, height measurements, and temporal labels. WeedSense leverages a dual-path encoder incorporating Universal Inverted Bottleneck blocks and a Multi-Task Bifurcated Decoder with transformer-based feature fusion to generate multi-scale features and enable simultaneous prediction across multiple tasks. WeedSense outperforms other state-of-the-art models on our comprehensive evaluation. On our multi-task dataset, WeedSense achieves mIoU of 89.78% for segmentation, 1.67cm MAE for height estimation, and 99.99% accuracy for growth stage classification while maintaining real-time inference at 160 FPS. Our multitask approach achieves 3$\times$ faster inference than sequential single-task execution and uses 32.4% fewer parameters. Please see our project page at weedsense.github.io.
- Abstract(参考訳): 雑草管理は農業において重要な課題であり、作物の収量に大きな影響を与え、管理にかなりの資源を必要としている。
効率的な雑草モニタリングと分析戦略は、持続可能な農業慣行とサイト固有の管理アプローチの実現に不可欠である。
WeedSenseは包括的雑草分析のための新しいマルチタスク学習アーキテクチャであり、セマンティックセグメンテーション、高さ推定、成長段階分類を共同で行う。
我々は,11週間の生育周期で16種の雑草を採集し,画素レベルのアノテーション,高さ測定,時間ラベルを用いた独自のデータセットを提示する。
WeedSenseはUniversal Inverted BottleneckブロックとMulti-Task Bifurcated Decoderを組み込んだデュアルパスエンコーダを利用する。
WeedSenseは、私たちの総合的な評価において、他の最先端モデルよりも優れています。
WeedSenseのマルチタスクデータセットでは、セグメンテーションに89.78%、高さ推定に1.67cm MAE、成長段階分類に99.99%の精度でmIoUを達成した。
我々のマルチタスクアプローチは、シーケンシャルなシングルタスク実行よりも3$\times$高速な推論を実現し、32.4%少ないパラメータを使用する。
Weedsense.github.ioのプロジェクトページをご覧ください。
関連論文リスト
- WeedsGalore: A Multispectral and Multitemporal UAV-based Dataset for Crop and Weed Segmentation in Agricultural Maize Fields [0.7421845364041001]
雑草は作物の収穫が減少する主な原因の1つであるが、現在の雑草の慣行は、効率的で標的とした方法で雑草を管理するのに失敗している。
農作物畑における作物と雑草のセマンティックスとインスタンスセグメンテーションのための新しいデータセットを提案する。
論文 参考訳(メタデータ) (2025-02-18T18:13:19Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
ハイパースペクトル画像上で複数の分類タスクと回帰タスクを同時に行うマルチタスク深層学習モデルを提案する。
我々は、TAIGAと呼ばれる大規模なハイパースペクトルデータセットに対するアプローチを検証した。
結果の総合的定性的および定量的分析により,提案手法が他の最先端手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2024-07-23T11:14:54Z) - A Point-Based Approach to Efficient LiDAR Multi-Task Perception [49.91741677556553]
PAttFormerは、ポイントクラウドにおける共同セマンティックセグメンテーションとオブジェクト検出のための効率的なマルチタスクアーキテクチャである。
他のLiDARベースのマルチタスクアーキテクチャとは異なり、提案したPAttFormerはタスク固有のポイントクラウド表現のために別の機能エンコーダを必要としない。
マルチタスク学習では,mIouでは+1.7%,mAPでは3Dオブジェクト検出では+1.7%,LiDARセマンティックセマンティックセグメンテーションは+1.7%向上した。
論文 参考訳(メタデータ) (2024-04-19T11:24:34Z) - SICKLE: A Multi-Sensor Satellite Imagery Dataset Annotated with Multiple
Key Cropping Parameters [3.5212817105808627]
SICKLEと呼ばれるファースト・オブ・ザ・キンドのデータセットを導入する。
ランドサット8、センチネル1、センチネル2の3つの異なる衛星からの多重解像度画像の時系列を構成する。
我々はSICKLEを作物の種類、作物の表現学(播種、移植、収穫)、収量予測の3つのタスクでベンチマークした。
論文 参考訳(メタデータ) (2023-11-29T21:20:58Z) - Joint Depth Prediction and Semantic Segmentation with Multi-View SAM [59.99496827912684]
我々は,Segment Anything Model(SAM)のリッチなセマンティック特徴を利用した深度予測のためのマルチビューステレオ(MVS)手法を提案する。
この拡張深度予測は、Transformerベースのセマンティックセグメンテーションデコーダのプロンプトとして役立ちます。
論文 参考訳(メタデータ) (2023-10-31T20:15:40Z) - CWD30: A Comprehensive and Holistic Dataset for Crop Weed Recognition in
Precision Agriculture [1.64709990449384]
精密農業における作物雑草認識タスクに適した大規模・多種多様・包括的・階層的データセットであるCWD30データセットを提示する。
CWD30は20種の雑草と10種の高解像度画像を219,770枚以上、様々な成長段階、複数の視角、環境条件を含む。
データセットの階層的な分類は、きめ細かい分類を可能にし、より正確で堅牢で一般化可能なディープラーニングモデルの開発を促進する。
論文 参考訳(メタデータ) (2023-05-17T09:39:01Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3Dセマンティックデータは、障害物検出やエゴ-車両の局所化といった中核的な認識タスクに有用である。
そこで我々は,大規模生産段階の運用領域に対応する多様なラベル空間を持つ新しいデータセットであるNavala 3D(Navya3DSeg)を提案する。
ラベルのない23のラベル付きシーケンスと25の補足シーケンスが含まれており、ポイントクラウド上の自己教師付きおよび半教師付きセマンティックセマンティックセグメンテーションベンチマークを探索するために設計された。
論文 参考訳(メタデータ) (2023-02-16T13:41:19Z) - MulT: An End-to-End Multitask Learning Transformer [66.52419626048115]
我々はMulTと呼ばれるエンドツーエンドのマルチタスク学習トランスフォーマフレームワークを提案し、複数のハイレベル視覚タスクを同時に学習する。
本フレームワークは,入力画像を共有表現にエンコードし,タスク固有のトランスフォーマーベースのデコーダヘッドを用いて各視覚タスクの予測を行う。
論文 参考訳(メタデータ) (2022-05-17T13:03:18Z) - Deep-CNN based Robotic Multi-Class Under-Canopy Weed Control in
Precision Farming [2.6085535710135654]
リアルタイム多クラス雑草識別は雑草の種特異的な処理を可能にし、除草剤の使用量を著しく減少させる。
本稿では,5つのベンチマークCNNモデルを用いた分類性能のベースラインを提案する。
我々はMobileNetV2を、リアルタイム雑草検出のためのコンパクトな自律ロボットTextitSAMBotにデプロイする。
論文 参考訳(メタデータ) (2021-12-28T03:51:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。