論文の概要: From Slices to Structures: Unsupervised 3D Reconstruction of Female Pelvic Anatomy from Freehand Transvaginal Ultrasound
- arxiv url: http://arxiv.org/abs/2508.14552v1
- Date: Wed, 20 Aug 2025 09:09:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-21 16:52:41.405854
- Title: From Slices to Structures: Unsupervised 3D Reconstruction of Female Pelvic Anatomy from Freehand Transvaginal Ultrasound
- Title(参考訳): スライスから構造へ:フリーハンド経血管超音波による女性骨盤解剖の教師なし3次元再構成
- Authors: Max Krähenmann, Sergio Tascon-Morales, Fabian Laumer, Julia E. Vogt, Ece Ozkan,
- Abstract要約: 本稿では,2次元経血管超音波(TVS)スイープから3次元解剖構造を再構築するための新しい枠組みを提案する。
本手法はガウス散乱の原理を超音波領域に適用し,スライスアウェアで微分可能な空間化器を導入する。
その結果、コンパクトで柔軟性があり、メモリ効率のよい表現となり、高い忠実さで解剖学的詳細を捉えます。
- 参考スコア(独自算出の注目度): 8.740779457368255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Volumetric ultrasound has the potential to significantly improve diagnostic accuracy and clinical decision-making, yet its widespread adoption remains limited by dependence on specialized hardware and restrictive acquisition protocols. In this work, we present a novel unsupervised framework for reconstructing 3D anatomical structures from freehand 2D transvaginal ultrasound (TVS) sweeps, without requiring external tracking or learned pose estimators. Our method adapts the principles of Gaussian Splatting to the domain of ultrasound, introducing a slice-aware, differentiable rasterizer tailored to the unique physics and geometry of ultrasound imaging. We model anatomy as a collection of anisotropic 3D Gaussians and optimize their parameters directly from image-level supervision, leveraging sensorless probe motion estimation and domain-specific geometric priors. The result is a compact, flexible, and memory-efficient volumetric representation that captures anatomical detail with high spatial fidelity. This work demonstrates that accurate 3D reconstruction from 2D ultrasound images can be achieved through purely computational means, offering a scalable alternative to conventional 3D systems and enabling new opportunities for AI-assisted analysis and diagnosis.
- Abstract(参考訳): ボリューム超音波は診断精度と臨床診断の精度を大幅に向上させる可能性があるが、その普及は特別なハードウェアや限定的な取得プロトコルに依存しているため限られている。
本研究では,外的追跡やポーズ推定を必要とせず,フリーハンド2次元経血管超音波(TVS)スイープから3次元解剖構造を再構築する新しいフレームワークを提案する。
本手法はガウス散乱の原理を超音波領域に適用し, 超音波イメージングの物理と幾何学に適合したスライスアウェア, 差別化可能なラスタライザを導入する。
我々は、解剖学を異方性3次元ガウスの集合としてモデル化し、センサレスプローブ運動推定とドメイン固有の幾何学的先行情報を利用して、画像レベルの監督から直接パラメータを最適化する。
その結果、コンパクトでフレキシブルでメモリ効率のよい容積表現となり、高い空間忠実度で解剖学的詳細を捉えることができる。
この研究は、2次元超音波画像からの正確な3次元再構成を純粋に計算し、従来の3次元システムに代わるスケーラブルな代替手段を提供し、AIによる解析と診断の新しい機会を可能にすることを実証している。
関連論文リスト
- UltraGauss: Ultrafast Gaussian Reconstruction of 3D Ultrasound Volumes [15.02330703285484]
2D-to-3D再構成は、しばしば計算コストが高く、メモリ集約的であり、超音波物理と相容れない。
UltraGauss - 超音波波伝搬にビュー合成技術を拡張した最初の超音波特異的ガウス平滑化フレームワーク。
実際の臨床超音波データでは、UltraGaussは最先端の再建を5分で達成し、1枚の画像で0.99 SSIMに達する。
論文 参考訳(メタデータ) (2025-05-08T20:53:47Z) - IXGS-Intraoperative 3D Reconstruction from Sparse, Arbitrarily Posed Real X-rays [1.2721397985664153]
R2$-Gaussian splatting frameworkを拡張して、一貫した3Dボリュームを困難な条件下で再構築する。
形態伝達を用いた解剖学的誘導ラジオグラフィ標準化のステップを導入し、ビュー間の視覚的整合性を改善する。
論文 参考訳(メタデータ) (2025-04-20T18:28:13Z) - ImplicitCell: Resolution Cell Modeling of Joint Implicit Volume Reconstruction and Pose Refinement in Freehand 3D Ultrasound [12.066225199232777]
ImplicitCell は Inlicit Neural Representation (INR) と超音波分解能セルモデルを統合した新しいフレームワークである。
実験結果から, ImplicitCell は既存手法と比較して, 復元アーチファクトを著しく低減し, ボリューム品質を向上することが示された。
論文 参考訳(メタデータ) (2025-03-09T16:40:49Z) - Enhancing Free-hand 3D Photoacoustic and Ultrasound Reconstruction using Deep Learning [3.8426872518410997]
本研究では,携帯型光音響・超音波(PAUS)画像における3次元再構成を支援するため,グローバルローカル自己保持モジュール(MoGLo-Net)を用いたモーションベース学習ネットワークを提案する。
MoGLo-Netは、連続した超音波画像内の完全に発達したスペックル領域や高発癌組織領域などの臨界領域を利用して、運動パラメータを正確に推定する。
論文 参考訳(メタデータ) (2025-02-05T11:59:23Z) - MedTet: An Online Motion Model for 4D Heart Reconstruction [59.74234226055964]
本研究は, 術後の軽度データから3次元心臓運動を再構築するための新しいアプローチを提案する。
既存の方法では、フル3次元の体積像から3次元の臓器のジオメトリーを正確に再構築することができる。
このような部分的データから3次元運動を再構築するための汎用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-03T17:18:33Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Transducer Adaptive Ultrasound Volume Reconstruction [17.19369561039399]
フリーハンド2Dスキャンによる3Dボリューム再構成は、特に外部追跡装置を使わずに、非常に難しい問題である。
近年の深層学習に基づく手法は,連続する超音波フレーム間のフレーム間移動を直接推定する可能性を示している。
本稿では、異なるトランスデューサで取得したデータにディープラーニングアルゴリズムを適用するための新しいドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2020-11-17T04:46:57Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
光音響トモグラフィ(PAT)は、形態学的および機能的組織特性の両方を解決することができる新しいイメージング技術である。
現在の欠点は、従来の2Dプローブによって提供される視野の制限である。
本研究では,外部追跡システムを必要としないPATデータの3次元再構成手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T09:27:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。