論文の概要: Efficient Switchable Safety Control in LLMs via Magic-Token-Guided Co-Training
- arxiv url: http://arxiv.org/abs/2508.14904v1
- Date: Tue, 12 Aug 2025 02:39:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:45.996175
- Title: Efficient Switchable Safety Control in LLMs via Magic-Token-Guided Co-Training
- Title(参考訳): マジックトウケン誘導コレーニングによるLCMの効率的な切換安全制御
- Authors: Jianfeng Si, Lin Sun, Zhewen Tan, Xiangzheng Zhang,
- Abstract要約: LLM(Large Language Models)におけるコンテンツ安全性の現在の手法は、マルチステージトレーニングパイプラインに依存している。
複数の安全性挙動を効率的に統合する統合協調学習フレームワークを提案する。
我々は,SFT+DPOの安全アライメント品質に一致し,安全性能においてDeepSeek-R1 (671B) を上回る8Bモデルを示した。
- 参考スコア(独自算出の注目度): 1.5349686675266894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current methods for content safety in Large Language Models (LLMs), such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), often rely on multi-stage training pipelines and lack fine-grained, post-deployment controllability. To address these limitations, we propose a unified co-training framework that efficiently integrates multiple safety behaviors: positive (lawful/prosocial), negative (unfiltered/risk-prone) and rejective (refusal-oriented/conservative) within a single SFT stage. Notably, each behavior is dynamically activated via a simple system-level instruction, or magic token, enabling stealthy and efficient behavioral switching at inference time. This flexibility supports diverse deployment scenarios, such as positive for safe user interaction, negative for internal red-teaming, and rejective for context-aware refusals triggered by upstream moderation signals. This co-training strategy induces a distinct Safety Alignment Margin in the output space, characterized by well-separated response distributions corresponding to each safety mode. The existence of this margin provides empirical evidence for the model's safety robustness and enables unprecedented fine-grained control. Experiments show that our method matches the safety alignment quality of SFT+DPO, with our 8B model notably surpassing DeepSeek-R1 (671B) in safety performance, while significantly reducing both training complexity and deployment costs. This work presents a scalable, efficient, and highly controllable solution for LLM content safety.
- Abstract(参考訳): Supervised Fine-Tuning (SFT) や Reinforcement Learning from Human Feedback (RLHF) のような大規模言語モデル (LLM) におけるコンテンツ安全性の現在の手法は、しばしば多段階のトレーニングパイプラインに依存し、きめ細かい展開後の制御性に欠ける。
これらの制約に対処するため、我々は、複数の安全行動(正(違法/社会的)、負(非フィルター/リスク・プロン)、拒絶(拒絶指向/保守)を単一のSFTステージに効率的に統合する統合的協調訓練フレームワークを提案する。
特に、各動作は単純なシステムレベルの命令またはマジックトークンによって動的に活性化され、推論時にステルスで効率的な振る舞い切替を可能にする。
この柔軟性は、安全なユーザインタラクションに対する肯定的、内部のリピートに対する否定的、上流のモデレーション信号によって引き起こされるコンテキスト認識の拒絶など、さまざまなデプロイメントシナリオをサポートする。
この協調学習戦略は、各安全モードに対応するよく分離された応答分布を特徴とする出力空間において、明確な安全アライメントマージンを誘導する。
このマージンの存在は、モデルの安全性の堅牢性を実証的に証明し、前例のないきめ細かい制御を可能にする。
実験の結果,SFT+DPOの安全性アライメント品質は,安全性がDeepSeek-R1 (671B) を上回った8Bモデルと一致した。
この研究は、LLMコンテンツ安全性のためのスケーラブルで、効率的で、高度に制御可能なソリューションを提供する。
関連論文リスト
- Rethinking Safety in LLM Fine-tuning: An Optimization Perspective [56.31306558218838]
我々は、本質的にトレードオフではなく、最適化の貧弱な選択が、しばしば安全上の問題を引き起こすことを示し、敵のプロンプトに対する有害な応答として測定する。
安全性能を保ったパラメータ空間における簡易指数移動平均(EMA)運動量法を提案する。
複数のデータセットにまたがるLlamaファミリーに関する実験は、安全性の問題が特別な介入なしに回避できることを実証している。
論文 参考訳(メタデータ) (2025-08-17T23:46:36Z) - SafeSteer: Interpretable Safety Steering with Refusal-Evasion in LLMs [7.120986296945107]
本稿では,大規模言語モデル(LLM)の出力を誘導するSafeSteerという手法について検討する。
テキストの品質,トピックの関連性,明示的な拒絶を保ちながら,安全ステアリングを高めるために,簡単な,勾配のない教師なしの手法を用いている。
論文 参考訳(メタデータ) (2025-06-01T01:19:37Z) - Shape it Up! Restoring LLM Safety during Finetuning [66.46166656543761]
大型言語モデル(LLM)の微調整は、ユーザ固有のカスタマイズを可能にするが、重大な安全性リスクをもたらす。
動的安全整形(DSS)は,不安全コンテンツを抑えつつ,応答の安全な部分からの学習を強化するための,きめ細かい安全信号を用いたフレームワークである。
STARスコアによって導かれるSTAR-DSSは、微調整リスクを堅牢に軽減し、多様な脅威、データセット、モデルファミリーにまたがる大幅な安全性の向上を提供する。
論文 参考訳(メタデータ) (2025-05-22T18:05:16Z) - SafeSwitch: Steering Unsafe LLM Behavior via Internal Activation Signals [50.463399903987245]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的な能力を示すが、有害なコンテンツを生成することでリスクを引き起こす。
LLMは、内部状態の安全性に関する内部評価を同様に行うことができることを示す。
本稿では,プロバーをベースとした内部状態モニタを用いて,安全でない出力を規制するSafeSwitchを提案する。
論文 参考訳(メタデータ) (2025-02-03T04:23:33Z) - Superficial Safety Alignment Hypothesis [8.297367440457508]
本稿では,安全アライメントが安全でないモデルに正しい推論方向を選択するよう教えるべきであるとする,表向きの安全アライメント仮説(SSAH)を提案する。
安全に整合した大言語モデル(LLM)における属性クリティカルな4つのコンポーネントを同定する。
本研究は,特定の安全クリティカル成分の凍結を微調整中に行うことにより,新しい作業に適応しつつ,その安全性特性を維持できることを示した。
論文 参考訳(メタデータ) (2024-10-07T19:53:35Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
本研究では,環境を協調的に学習し,制御ポリシーを最適化する安全な強化学習手法を提案する。
本手法は, 安全性の制約を効果的に適用し, シミュレーションにより測定したシステム安全率においてCMDPベースのベースライン法を著しく上回っている。
論文 参考訳(メタデータ) (2022-09-29T20:49:25Z) - Safe Model-Based Reinforcement Learning Using Robust Control Barrier
Functions [43.713259595810854]
安全に対処する一般的なアプローチとして、安全層が追加され、RLアクションを安全な一連のアクションに投影する。
本稿では,モデルベースRLフレームワークにおけるロバスト制御バリア機能層としての安全性について述べる。
論文 参考訳(メタデータ) (2021-10-11T17:00:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。