論文の概要: Personalized Recommendations via Active Utility-based Pairwise Sampling
- arxiv url: http://arxiv.org/abs/2508.14911v1
- Date: Tue, 12 Aug 2025 19:09:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:46.00387
- Title: Personalized Recommendations via Active Utility-based Pairwise Sampling
- Title(参考訳): アクティブユーティリティに基づくペアワイズサンプリングによるパーソナライズされたレコメンデーション
- Authors: Bahar Boroomand, James R. Wright,
- Abstract要約: 単純かつ直感的なペアワイズ比較から好みを学習するユーティリティベースのフレームワークを提案する。
本研究の中心的な貢献は,嗜好評価のための新規なユーティリティベースアクティブサンプリング戦略である。
- 参考スコア(独自算出の注目度): 1.704905100460915
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recommender systems play a critical role in enhancing user experience by providing personalized suggestions based on user preferences. Traditional approaches often rely on explicit numerical ratings or assume access to fully ranked lists of items. However, ratings frequently fail to capture true preferences due to users' behavioral biases and subjective interpretations of rating scales, while eliciting full rankings is demanding and impractical. To overcome these limitations, we propose a generalized utility-based framework that learns preferences from simple and intuitive pairwise comparisons. Our approach is model-agnostic and designed to optimize for arbitrary, task-specific utility functions, allowing the system's objective to be explicitly aligned with the definition of a high-quality outcome in any given application. A central contribution of our work is a novel utility-based active sampling strategy for preference elicitation. This method selects queries that are expected to provide the greatest improvement to the utility of the final recommended outcome. We ground our preference model in the probabilistic Plackett-Luce framework for pairwise data. To demonstrate the versatility of our approach, we present two distinct experiments: first, an implementation using matrix factorization for a classic movie recommendation task, and second, an implementation using a neural network for a complex candidate selection scenario in university admissions. Experimental results demonstrate that our framework provides a more accurate, data-efficient, and user-centric paradigm for personalized ranking.
- Abstract(参考訳): 推薦システムは,ユーザの好みに基づいたパーソナライズされた提案を提供することによって,ユーザエクスペリエンスの向上に重要な役割を果たす。
伝統的なアプローチは、しばしば明示的な数値評価に依存したり、完全にランク付けされた項目のリストへのアクセスを前提にしている。
しかし、評価はユーザの行動バイアスや評価尺度の主観的解釈によって真の嗜好を捉えることができず、一方で完全なランク付けは必要で実用的ではない。
これらの制約を克服するために,単純かつ直感的なペアワイズ比較から好みを学習する汎用ユーティリティベースフレームワークを提案する。
我々のアプローチはモデルに依存しないものであり、任意のタスク固有のユーティリティ関数を最適化するために設計されており、任意のアプリケーションにおける高品質な結果の定義と明確に一致させることができる。
本研究の中心的な貢献は,嗜好評価のための新規なユーティリティベースアクティブサンプリング戦略である。
本手法は,最終推奨結果の有用性を最大限に向上すると思われるクエリを選択する。
我々は、ペアデータに対する確率論的Plackett-Luceフレームワークに、我々の好みモデルを構築した。
提案手法の汎用性を実証するため,古典映画推薦タスクにおける行列分解を用いた実装と,大学入試における複雑な候補選択シナリオのためのニューラルネットワークを用いた実装の2つの異なる実験を行った。
実験の結果,我々のフレームワークはパーソナライズされたランキングに対して,より正確で,データ効率が高く,ユーザ中心のパラダイムを提供することがわかった。
関連論文リスト
- Online Clustering of Dueling Bandits [59.09590979404303]
本稿では、優先フィードバックに基づく協調的な意思決定を可能にするために、最初の「デュエルバンディットアルゴリズムのクラスタリング」を導入する。
本稿では,(1)ユーザ報酬関数をコンテキストベクトルの線形関数としてモデル化する線形デューリング帯域のクラスタリング(COLDB)と,(2)ニューラルネットワークを用いて複雑な非線形ユーザ報酬関数をモデル化するニューラルデューリング帯域のクラスタリング(CONDB)の2つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-02-04T07:55:41Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
新たな合成データ生成パイプラインを用いて48,000の命令追従プロンプトを生成する。
合成プロンプトでは、リジェクションサンプリング(RS)とモンテカルロ木探索(MCTS)の2つの選好データセットキュレーション手法を用いる。
実験により、MCTSが生成した選好ペアにおける共有プレフィックスは、限界はあるが一貫した改善をもたらすことが明らかになった。
高コントラストの選好ペアは一般的に低コントラストのペアよりも優れているが、両者を組み合わせることで最高のパフォーマンスが得られることが多い。
論文 参考訳(メタデータ) (2024-12-18T15:38:39Z) - Preference Discerning with LLM-Enhanced Generative Retrieval [28.309905847867178]
我々は、選好識別という新しいパラダイムを提案する。
嗜好判断において、我々は、そのコンテキスト内でのユーザの嗜好に対して、生成的シーケンシャルなレコメンデーションシステムを明示的に条件付けする。
ユーザレビューと項目固有データに基づいて,Large Language Models (LLMs) を用いてユーザ嗜好を生成する。
論文 参考訳(メタデータ) (2024-12-11T18:26:55Z) - Comparison-based Active Preference Learning for Multi-dimensional Personalization [7.349038301460469]
大きな言語モデル(LLM)は目覚ましい成功を収めていますが、それらを人間の好みに合わせることは、依然として重要な課題です。
近年,多次元のパーソナライゼーションが研究されている。これはモデルが明示的な嗜好に合った応答を生成できるようにすることを目的としている。
対話的に収集された比較フィードバックから暗黙的なユーザの嗜好を捉えるために,能動多次元選好学習(AMPLe)を提案する。
論文 参考訳(メタデータ) (2024-11-01T11:49:33Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Pragmatic Feature Preferences: Learning Reward-Relevant Preferences from Human Input [17.131441665935128]
より正確な報酬モデルを学ぶのに有用な例が好まれる理由について,より詳細なデータを抽出する方法を検討する。
本研究は, 実用的特徴嗜好を取り入れることが, より効率的なユーザ適応型報酬学習に有望なアプローチであることが示唆された。
論文 参考訳(メタデータ) (2024-05-23T16:36:16Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
ユーザーランキングに基づく好みの学習を目的としたTop-Nレコメンデーションは、長い間、広範囲のアプリケーションにおいて基本的な問題だった。
本稿では,データ不足問題に対処するため,因果推論フレームワーク内での推薦タスクの再構築を提案する。
論文 参考訳(メタデータ) (2021-09-02T14:28:46Z) - Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback
based Recommendation [59.183016033308014]
本稿では,暗黙的フィードバックの特徴を探究し,推奨するSet2setRankフレームワークを提案する。
提案するフレームワークはモデルに依存しず,ほとんどの推奨手法に容易に適用できる。
論文 参考訳(メタデータ) (2021-05-16T08:06:22Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。